-~ STANISLAW KRUK

- ASEMBLER

PODRECZNIK
UZYTKOWNIKA

Asembler - Podrecznik uzytkownika

Projekt oktadki: Grzegorz L.awniczak |
Redakcja: Irena Pielinska

Sktad komputerowy: Dorota Swistak

. Ksiazka uczy postugiwania si¢ asemblerem pozwalajac czytelnikom na
zapoznanie si¢ z podr6zami po wnegtrzu komputera. Asembler to narzedzie,
ktore pozwala wladaé komputerem na poziomie niedostgpnym dla
przecigtnego uzytkownika.

Autor kolejno opisuje rejestry komputera oraz jego oprogramowanie
systemowe. Nastgpnie wprowadza czytelnikow w zasady budowy programow
w jezyku asemblera. Oddzielne miejsce zostalo przeznaczonc na omowicnic
przerwan.

Ksiazke zamykaja dodatki, ktore dotycza migdzy innymi arytmetyki
dwdjkowej i szesnastkowej oraz prezentuja listg rozkazéw procesora Pentium.
Dla zainteresowanych autor wraz z wydawnictwem MIKOM przygotowuja
_kolejne ksiazki na temat bardziej zaawansowanych zagadnien zwiazanych
z asemblerem.

Zastrzezonych nazw firm 1 produktéw uzyto w ksiazce wylacznie w celu
identyfikacji.

Copyright © Wydawnictwo MIKOM
‘Wszystkie prawa zastrzezone. Reprodukcja bez zezwolenia zabroniona.

Wydawca: ZNI MIKOM, ul. Andrzejowska 3, 02-312 Warszawa, tel. 823-70-77
Druk: ZWP "HEL", ul. Grenadieréw 77, Warszawa, tel. §10-12-71

ISBN 83-7158-181-5

Warszawa, maj 1999

Asembler - Podrecznik uzytkownika Strona:2

Spis tresci

O AULOTA....ceeereicicicnesensesaensassssnsssssssssesssessassssssssassssssssnenssenssesssssssossnens 5
1. Podstawy ASEMDIEraccecevereereeerererenenessonessessssossssasnnes cenresssrsesnisssatesnransasans 7
1.1, Natura JgzyKa ASCMDIET..........ccoviiiiiiiiiiiieeeeeeeeeeeeee e e e s e e e e ese e s eaens 7
1.2. Architektura Sprzgtowa KOMPULETAccuevvverivivieiiececeeieieeeeree e e e s e 8
1.3. Powstawanie i rozwG] jezyKa ASEMDbIET...........ocveeveeeeeeeeereeeereesseeeereereereeenns 8
1.4, O uzZyteCZNOSCI PIOZTAIMOW ...c.ccvevinveeeeeieeeieeeee st e e e e s s s e en e e e ees e e eseeens 9
1.5. Procesory, pamiec i jej adresowanie; przechowywanie odwrotne 9
1.6. Wejs’cie/wyjs’cie ... 13
1.7. Przerwania; WeKtOry PIrZEIWa......ccooveveiiieiiniiieieeieeeee e seesresresereseeesesnaseen 14
2e REJESIIY couneeenereneereresiessessinsacssensasassssensasassesssensnsssssssanssessssssasssenessasssosssssesssnsnsane 17
2.1. Rejestry powszechnego zastOSOWANIAcvvvevveereeeeereeeeeeeereeeeeeeesesssresses 18
2.2. Rejestry wskaznikowe 1 indeKSOWE...........ovvvvevriiveereeeeeeee oo seees oo 20
2.3, ReJeSHY SEEIMENIOWE.vectiveeeei et s se et ere e s e ee e e eesesenereenes 22
2.4, WSKaZniK TOZKAZOWc..ooiiiieiiiiiiiiiicee et es e eee s et e see st en e saeas 26
2.5, ReJESIr ZNACZNIKOW ...c.cooviiiiiiiiiiiicce ettt aee e saeeee e 26
3. Oprogramowanie systemowe DOS i BIOSvveiveevecnrinreerencecsnecsssvssssscnne 27
3.1. Funkcje BIOS. ...ttt ettt e e eae et 30
4. ,,Towarzysze” gldwnego procesora.............. Ciaesesstssssissstesssrnntsesesenatessrnanarsas 31
5. Program uruchomieniowy DEBUG........ccccoueveereeeereeserreressisesenseesessessssssssssens 35
5.1, POIECEMIA.....ooviiiiiiieereecciiit sttt ettt et ettt st ae s e eneseeeeneees 35
5.2. Proste programy pod DEBUGHEIMc.ccuieviviuievieieiceeeeecs e 44
5.3. Zalety, wady, mozliwosci programu DEBUGcc.oocoiiveeieeeeeeeeeeeeeen 48
6. Podstawy konstruowania programow w jezyku Asembler.......coeeveeeeeerreennes 51
0.1, POLE ELYKIELY ..uevvireriiererir sttt ettt even ettt et et een et ereeeenane 56
6.2. Pole operacji (pole mnemonika)..........cc.oeeeeeiveirerieeeiiiceeeeeieeeseeereersreeens 57
6.3. Pole argumentéw (0perandGw)ceeieivieeririeieriieiceeeeeeeeeeere e 57
6.4. POle KOMENEAIZAc.ccoooiivriiiciiecieiee ettt et 57

Asembler - Podrecznik uzytkownika Strona:3

4 Asembler. Poradnik uzytkownika

7. Tablica WeKLOrOW PrZerWal......cocveverssssessrssnanssnsnsssssassasssssanssscssessossassssssnssasasasen 65
8. Dwa przerwania najcze$ciej uzywane w programach asemblerowych........... 69
Dodatek A. KOd ASCII ...uueuveeromieciseicisssnmssssnsesssenessssasssssssnesessasssssssesssssssansssssssnssessss 77
Dodatek B. Potegi liczby 2 i liczhy 16 wccuevrvciiincsiiisenrunsnensinmniiinensesiesensannens 87
Dodatek C. Arytmetyka dwojkowa i s2esnastkOwa w.ceviisensciinenecresnnsennnissenenes 89
C.1. Zamiana liczby dziesietnej na dwdjkowa i odWrotniC. ...covvevervnvnneciiiniinne, 89
C.2. Zamiana liczby dziesi¢ctnej na szesnastkowa 1 0dWrotnie..........c.occonivnnnns 90
C.3. Dodawanie liczb dwdéjkowych i szesnastkowych........cocoevnniiii. 90
Dodatek D. Lista rozkazow procesora Pentium — opis 0g0Inyccccvevececseccserenceee 91
D.1. Rozkazy zaimplementowane w technologii MMX™ e 96
D.2. Rozkazy koprocesora, FPU ... 97
Dodatek E. Maly stownik asemblerowyoocoeceeviisiiniiniininnsnniesenonsiesenianiense 101
SR OTOWIAZ ccocrervrrercenmresssrseessssanarssnseesssssssesssnssssssssssssrnsssssanesssssntessssatossssssnrnesssasnonsasssns 105

Asembler - Podrecznik uzytkownika Strona:4

Od Autora

Jest tak wiele rzeczy i zjawisk na $wiecie, iz czgsto stajemy bezradni wobec ty-
siecy nowych poj¢é. Proba dotknigcia ich naszymi zmystami nie zawsze bywa udana.
Moze robimy to zbyt po amatorsku, a moze brak nam wystarczajacej wiedzy do zro-
Zumienia tego, co probujemy badaé. Napiszmy literke czy narysujmy kreske na papie-
rze. Nawet nie zdajemy sobie sprawy, ile w tym czasie musiato zaj$¢ w naszym wne-
trzu, by stworzona zostata literka czy kreska. Rozbicie catosci na czgsci, na kawatki,
po to tylko, by méc zrozumieé cato$¢. Z pozoru przewrotna to mysl, chociaz po chwili
dojdziemy do wniosku, iz tak nie jest. To jest normalne. Na pewno niejeden z nas
mfodych badaczy — czy dorostych — badat §wiat ,,rozbierajac go na czedci”, na kawat-
ki, niezaleznie od tego, czy tym ,$wiatem” byt zegarek, radioodbiornik, kalkulator,
czy wreszcie, komputer. Niewazne, czego to badanie dotyczyto, wazne w tym wszyst-
kim bylo to, iz uczyliSmy si¢ dostrzegaé, w jakim celu to zostalo tak skonstruowane.

W komputerze naciskamy klawisz [Enter] czy klawisz myszki i od tej chwili za-
czyna sie co§ dziaé, komputer wy$wietla, gra, bawi itp. Ale co takiego si¢ stalo, ze tak
maty impuls wywolal taka lawine zjawisk. W fizyce opisujacej zjawiska atmosfe-
ryczne efekt taki przyjeto si¢ nazywaé efektem motyla. Jeden drobny ruch skrzydef
motyla wywola trab¢ powietrzng kilkaset kilometréw dalej, zjawiska niestacjonarne,
trudne do przewidzenia. W przypadku komputera moze nie ma az takich nieprzewi-
dywalnych zjawisk, chyba ze po [Enter] zaczyna si¢ nieoczekiwane kasowanie dysku
pelnego danych. Widocznie nieuwaznie przeczytaliSmy jakie$ polecenie lub kto§ zro-
bit nam brzydka ,,niespodzianke¢” badZ tez ozywiliSmy potwora z gigbin pamigci. Ro-
dem jak z Asemblera. No wiasnie, Asembler, to takie tajemnicze, niebezpieczne..., ale
i chyba zarazem ciekawe narzedzie. Taka czarodziejska retorta. Musi by¢ we wiasci-
wych rekach, aby co§ zlego si¢ nie stato. Nie jest to takie zwykte narzedzie, ktérym
wiekszo$¢ programistéw si¢ postuguje. Przy jego uzyciu obejmiesz wladze¢ nad catym
komputerem, nad jego zasobami, nad dyskiem, pamigcia, nad |, najodleglejszymi”
i ,ciemnymi” zakgtkami Twojej maszyny. I o tym bedzie ta ksiazka, ksigzka dla

wszystkich.

Przyjemnej lektury zyczy Autor

Asembler - Podrecznik uzytkownika Strona:5

1. Podstawy Asemblera

1.1. Natura jezyka Asembler

Niemal wszyscy wiemy, ze komputer to takie urzadzenie, ktére postuguje si¢ tyl-
ko dwoma cyframi, zerem 1 jedynka. Jak to jest jednak mozliwe, ze pomimo tak ubo-
giego alfabetu komputer moze wytworzy¢ tyle pigknych obrazéw, diwickéw,
animacji. Cata tajemnica tego swoistego piekna tkwi w szybkoéci operowania przez
maszyn¢ owymi zerami i jedynkami.

Ale od poczatku. Kazda maszyna cyfrowa ma swdj mozg-procesor i serce-zegar.
Im sprawniejszy mOzg 1 im szybszy zegar, nadajacy rytm pracy maszyny, tym wigksza
ma ona site do dzialania. Piszac programy za pomocg alfabetu zerojedynkowego, sie-
gamy az do najnizszego poziomu maszyny, do jej mézgu i serca. Interesujace, praw-
da? Jest tylko jeden problem; trzeba wiedzie¢, jak wpisywac te cyferki, i co najpierw,
0 czy 1?7 A moze kilka jedynek naraz, a potem kilka zer, moze jednak przeplataé je
odpowiednio? Ale jak? Zero czy jedynka maja swoje zarezerwowane miejsca-w ich
ustalonym ciggu. Ale kto ustalit ten ciag? Postaci ciggéw zerojedynkowych ustalili
tworcy, projektanci procesora, nadajgc im okreslone znaczenie, zgodne z jego budowa
i zastosowaniem. Czy to oznacza, ze w kontakcie z procesorem skazani jeste§my na
wpisywanie zer i jedynek w odpowiedniej kolejnosci? Na to by wygladato... I to ma
by¢ ten pigkny oraz najskuteczniejszy ze wszystkich jezykdéw, jezyk Asembler? To
znaczy, jezeli chcieliby§my chwilowo zatrzymac procesor, musielibySmy wpisac
10011011, nie straszac juz tu Czytelnika diugimi ,tasiemcami” zerojedynkowymi
w przypadku bardziej ztozonych sytuacii. .

Od pewnego czasu nie jest juz tak Zle. Jak podaja ksigzki o historii Asemblera,
podczas rywalizacji miedzy mocarstwami zaprogramowano rakiet¢ Vanquard — jako
odpowiedZ na Sputnika z 1957 1. — w jezyku wewnetrznym maszyny. Po prostu
Hhafaszerowano™ jej wnetrze zerami 1 jedynkami. I c6z si¢ stalo. Ano, stato sig, pro-
gramista przeoczyl zero czy jedynke, po czym odbyt si¢ kosztowny spektakl na niebo-
sktonie. Czy ten programista dalej tam pracowat? Nie wiadomo. W kazdym razie po-
waznie rzecz potraktowano, wzieto pod uwage omylno$é cztowieka i siggnieto po
pomyst z poczatku lat 50. Pomyst byl prosty; nalezato napisa¢ program przeksztalca-
jacy monotonne ciagi zerojedynkowe, ktére oznaczatyby kody rozkazdéw procesora
oraz ich adresy w pamigci, na symboliczne nazwy. Dokonano tego i okazato sig, ze to
dziala az do dzi$ — tak powstat symboliczny asembler (jako program-translator pisany
jest zawsze malg literka, aby nie myli¢ z nazwa jezyka Asembler). Wilk syty 1 owca

Asembler - Podrecznik uzytkownika Strona:6

8 Asembler. Poradnik uzytkownika

cata. Asembler jako jezyk pozostal, zamieniono tylko zmudne i fatwe do pomylenia
kody zerojedynkowe rozkazéw procesora na nazwy symboliczne, tzw. mnemoniki.
I tak np., zamiast wpisywac ciag 10011011 wprowadzajacy procesor w stan oczekiwa-
nia, wpisywaé bedziemy stowo angielskic WAIT. A gdybysmy si¢ pomylili i ciag
10011011 zamienili z ciagiem 11110100, spowodowaliby§my spore zamieszanie, bo
catkowicie zatrzymaliby§my procesor. Nietrudno sobie wyobrazic, jakie praktyczne
szkody mozc poczynié procesor, ktory nagle zostat ,,zwolniony z pracy” przez pro-
gram.

1.2. Architektura sprz¢towa komputera

W najbardziej ogolnych kategoriach komputer jest niczym innym jak urzadze-
niem, ktdre przemieszcza dane z jednego miejsca w inne, czasami je przeksztalcajgc
do réznych postaci. Posiada pigc ,,gtéw”, a kazda z nich odpowiada za swoj odcinek
pracy. Jedna ,.glowa” kontroluje klawiature, myszke, dysk, druga — monitor, drukarke,
dysk, trzecia — czuwa nad dzialaniami arytmetyczno-logicznymi, czwarta sprawuje
wladze nad pamigcia, a ostatnia, piata, czuwa nad catoscig. Nad nig czuwa juz tylko
czlowiek.

1.3. Powstawanie i rozwoj jezyka Asembler

Nie jest przypadkiem, ze rozkazy, ktére moze wykona¢ procesor, $cisle odpo-
wiadaja akcjom w nim zachodzacym. Czym tak naprawde jest rozkaz? Czym rézni si¢
on od danej, ktéra jest przez niego przetwarzana? Rozkaz jest to elementarna operacja,
jaka moze wykona¢ mikroprocesor, i tak naprawde niczym nie rézni si¢ od danej
(danych). Ogladajac w pamieci ciagi znakéw (zapisanych w systemie szesnastko-
wym), nie potrafimy powiedzie¢, ktéry z tych znakéw to rozkaz, a ktéry to dana.
Owszem, wprawne oko programisty-asemblerowca potrafi z duzym prawdopodobieii-
stwem powiedzieé¢: — Teraz widzg¢ (chyba) rozkaz, a teraz to dana tego (chyba) roz-
kazu. Jesli do pamieci wezytany zostal ,.czysty jak tza” program, tzw. mapa pamigci
(plik z rozszerzeniem .COM), to prawdopodobiefistwo odgadnigcia tego, co jest czym,
znacznie rosnie. Takie odgadywanie w Asemblerze, ze z ,,upieczonego placka™ okresli
sie ilo$¢ i rodzaj sktadnikéw, nazywa si¢ deasemblacja (badZ desasemblacja) kodu
wynikowego (wykonywalnego) na kod Zrédtowy. Kazdy rozkaz posiada swoja war-
to§¢, program za$ jest niczym wiecej, jak sekwencyjnie pouktadanymi wartosciami.
Ale ktéry rozkaz procesor bedzie wykonywal jako nastepny? Musza byc jakies
wskazniki pokazujace, gdzie ten rozkaz w pamieci si¢ znajduje. Gdy nastgpny rozkaz
jest czytany z pamieci i wykonywany, wskaZnik ustawiany jest na nastgpnym rozka-
zie. Niektére rozkazy moga ustawiaé¢ wskazniki do nowych wartosci; pozwala to pro-
cesorowi na niesekwencyjne wykonywanie szeregu rozkazéw, uzaleznione od okre-
§lonych warunkéw. W jezyku Asembler postugujemy si¢ rozkazami procesora, ktore

Asembler - Podrecznik uzytkownika Strona:7

Podstawy Ascmblera 9

tak zostaly skonstruowane i nazwane, by ich forma byta zorientowana na czlowieka.
Krétko méwige, ludzki wymiar , ztotych §ciezek procesora i jego rozkazéw”. Nie jest
wigc tak Zle, jakby sie moglo wydawaé. Tak jak asembler (program do ttumaczenia)
przeksztatca program Zrédtowy z jednego rodzaju tekstu zrozumiatego dla cztowieka
na tekst ,,zrozumialy” dla procesora, tak tenze procesor musi 6w tekst jeszcze przero-
bi€ na tzw. jezyk maszynowy, na zera i jedynki. Podczas gdy jezyk Asembler i jezyk
maszynowy sg sobie funkcjonalnie réwnowazne, to jednak jezyk Asembler jest jezy-
kiem dla ludzi. O wiele, wiele fatwiej zapamigtaé rozkaz ADD AL,3 wyrazony
W postaci mnemonicznej, oznaczajacy dodawanie wartosci 3 do rejestru, AL, niz gdy-
by rozkaz byt zapisany w formie liczb 04 i 03 sekwencyjnie wprowadzonych w pro-
gramie.

Niezwykle uzyteczng strong Asemblera jest to, iz pozwala on kontrolowagé akcje
procesora jedng za drugg, maksymalnie efektywnie. Owszem, kod Zrédlowy w Asem-
blerze jest diuzszy niz w jezyku C czy Pascalu, ale Zaden kod nie jest tak ,»SZybki
i zgrabny”, jak kod programu w Asemblerze. Asembler to nie tylko jezyk, ktory po-
zwala trzymac peing kontrole nad komputerem, ale to réwniez filozofia stylu pracy
procesora 1 jego otoczenia.

1.4. O uzytecznosci programoéw

Wszystkie procesory — od 8088/8086 az do Pentium — naleza do jednej rodziny
procesorow 1aPx86. Programistéw piszacych w Asemblerze interesuje tylko jedna
Izecz, a mianowicie, czy asemblerowe programy, kiére napisano dla procesora 8088,
beda réwnie dobre dla procesora Pentium? Tak, programy napisane dla pierwszego
procesora 8088 beda dobre do najnowszych maszyn, ale tylko w sensie programu
rédtowego. Jednakze, by programy te daly si¢ uruchomié na tych najnowszych ma-
szynach, trzeba je, przy uzyciu odpowiednich programéw tlumaczacych, ponownie
przettumaczy¢.

1.5. Procesory, pamigé i jej adresowanie; przechowywanie
odwrotne

Procesor, wykonujac programy, sigga po ich kody tam, gdzie si¢ one znajduja, to
znaczy do komorek pamigci. Musi on — niczym doreczyciel listéw — dokfadnie znad
adres zadanego miejsca, by pobra¢ przesytke do nadania lub tylko ja przekazaé. Pro-
cesor, jako gtéwny zarzadca, musi umie¢ komunikowac si¢ z pamiecia. Model 8086
zostaje potaczony dwudziestoma ,.drutami”, po ktérych biegna dane oraz adresy ko-
morek pamigci i urzadzed. Po jednym ,,drucie” moze przestaé on 0 albo 1, a wiec przy
dwudziestu ,,drutach” moze uczyni¢ to na 2*=1048576 mozliwosci. Wykorzystujac
wszystkie kombinacje ustawieni 0 i [na 20 ,drutach”, mozna jednoznacznie wskazac
(zaadresowac) 1048576 (1 MB — 1 megabajt) komérek pamieci.

Asembler - Podrecznik uzytkownika Strona:8

10 Asembler. Poradnik uzytkownika

Adresy szesnastkowe Adresy dziesietne

00000 0
00001 1
00002 2
00003 3
00004 4
00005 5
00006 6
00007 7
00008 8
00009 9
0000A 10
ooooB 11,

1 |

| I

| l

| I

1]
FFFF4 1048564
FFFF5 1048565
FFFF6 1048566
FFFF7 1048567
FFFF8 1048568
FFFF9 1048569
FFFFA 1048570
FFFFB 1048571
FFFFC 1048572
FFFFD 1048573
FFFFE 1048574
FFFFF 1048575

Rysunek 1.1. Przestrzef adresowa procesorow 8086/8088

Czy oznacza to, iz asemblerowy programista, wktadajac dang do pamigci badz
wskazujac ja, musi za kazdym razem wiedzie¢ i nieustannie $ledzi¢, gdzie w dane;
chwili znajduje sie ona w pamigci, a moze tam juz co§ si¢ znajduje, np. kod systemu
operacyjnego lub programy rezydentne tak samo wazne jak i kod systemu operacyj-
nego. A gdyby nawet programista miat wiedze, ktéra komorka pamigcel jest wolna
i mozna tam przesta¢ dang, to jak ma te komérke zaadresowac? Czy wolno mu wpisac
bezwzgledna wartos¢ komoérki w postaci: przeslij do 123786 komérki pamigci dana
1-bajtowa? Taki bezwzgledny zapis adresu komorki bytby nieprawidfowym zapisem.
Aby procesor, a przede wszystkim programista, mogli wzglednie fatwo poruszac si¢

Asembler - Podrecznik uzytkownika Strona:9

Podstawy Asemblera 11

po 1 MB pamigci, podzielono t¢ pamiec na 16 segmentéw, w kazdym segmencie po
65536 (64 KB) jednobajtowych komérek. Adres dowolnej komdérki pamieci bedzie sie
teraz sktadat z dwéch czgdci — numeru segmentu i potozenia komérki w tym segmen-
cie. W programie asemblerowym zapiszemy: przeslij dana do segmentu nr 10, a w tym
dziesiatym segmencie do komoérki nr 32456. Gdyby tak faktycznie byto, to nadal nie
rozwigzano by tego ,,problemu” adresowania mozliwie prosto, tak jak oczekiwaliby
tego programisci.

Programista po napisaniu kilku programéw miatby serdecznie dosyé wszelkiego
adresowania, nie méwigc juz o samej nauce jezyka i ztozonosci programowania, gdy-
by jeszcze nad nim zawisia taka ,.czarna chmura” niczym miecz Demoklesa. Procesor
to niezwykly rygorysta. Ustawia w pamigci wszystko tak, jak to byé powinno.
Wszystko ma pod swoja kontrola. Gdy sprobujemy mu co§ narzucié na sife, to na
pewno tego nie przyjmie i w takich sytuacjach zamrozi caly maszyne, zawieszajac jej
dziafanie. Nie ma wéwczas innego sposobu, jak zrobi¢ maszynie ,zimny prysznic”
w postaci RESET. Ale czgsty RESET moze maszynie powaznie na ,,zdrowiu” zaszko-
dzi¢. Wewnatrz procesora wbudowanych zostato kilka (kilkanascie) rejestréw. Sa to
bardzo szybkie elementy elektroniczne majace zdolno$é pamietania. Tylko niektérym
z nich mozna narzuci¢ swoje zdanie, inne rejestry pilnie stuchaja swego procesora.
Nawet asemblerowy programista, piszacy pod wskazany adres pamicci, petni jednak
rol¢ specyficznego skazaiica, skazanego na taki segment i takic miejsce w tym seg-
mencie (tzw. offset), jakie zostang mu ,,zaproponowane” przez procesor. Jest to jednak
jedyny pozytywny przypadek skazania.

Samowola programisty, zwtaszcza asemblerowego, mogltaby spowodowaé wiele
zniszczen, spustoszefi w maszynie, a w najlepszym razie ja zawiesi¢. A wicc procesor
musi surowo pilnowac, poprzez swoje rejestry, by programista nie wszedt mu w obszar
segmentu, w ktérym znajduje si¢ kod systemu operacyjnego czy co§ réwnie waznego
(o rejestrach napisano w dalszej czesci tej ksigzki). Programista zapisuje w programach,
mniej Jub bardziej jawnie, adres komérki (komérek) pamieci. Jest to adres, ktérego jed-
na czg$¢ odnosi si¢ do poczatku segmentu pamieci, a druga czesé do jakiego$ miejsca
w tym segmencie, liczonego od poczatku tegoz segmentu. Ta druga sktadowa adresu na-
zywa si¢ offsetem, za$ caly adres nazywany jest adresem logicznym, ztozonym z pary
oznaczane] w postaci: SEGMENT:OFFSET. Procesor korzystajac ze swych ,,umiejetno-
$c1”, jak tez z ,umiejetnosci” swoich ,kolegéw po szynie”, musi przeksztatci¢ adres
logiczny na adres fizyczny, dla modelu 8086/8088 na adres 20-bitowy, dokonujac prze-
liczen wedtug wzoru: adres fizyczny = 10xsegment+offset; gdzie segment oznacza
zawartos¢ jednego z rejestréw segmentowych, natomiast offset zawarto$¢ rejestru wska-
zujacego odlegtos¢ od poczatku w tym segmencie, 10 — liczbe w zapisie szesnastko-
wym, réwna 16 w zapisie szesnastkowym (heksadecymalnym); liczbe te czyta sie jako
jeden i sze$é, a nie szesnascie.

Asembler - Podrecznik uzytkownika Strona:10

12 Asembler. Poradnik uzytkownika

Intel 8086/8088 moze odwotaé sie do pamigci operacyjnej o pojemnosci 1 MB
— procesory te majg 20 wyprowadzeit adresowych. Dla wigkszosci przypadkéw wynik
adresu bazowego (adresu fizycznego) segmentu i przemieszczenia (offsetu) bedzie
liczba, 20-bitowa, jednakze moze sie zdarzy¢, ze dla niektorych wartoéci adresu bazo-
wego i przemieszczenia wynik dodania tych wartosci bedzie liczbg 21-bitowa. Gdy na
przyklad rejestr segmentowy ma warto§¢ réwng AOOOH (szesnastkowo), a rejestr
wskaznikowy ma wéwczas warto$¢ przemieszczenia (offsetu) réwna 0140H, wowczas
peltna wartos¢ adresu fizycznego wynosi¢ bedzie 10xA000H+0140H=A0000H+0140H
=A0140H=655680D (dziesietnie) lub 10100000000101000000B (dwojkowo). W sytu-
acji gdy rejestr segmentowy, np. DS, zawiera¢ bedzie warto§¢ OFFFFH, a przemiesz-
czenie jest rtowne OFFFFH, dodanie tych wartosci wedtug opisywanego wzoru da wy-
nik OFFFFOH+0FFFFH= 10FFEFH. Wynik ten jest liczba 21-bitowa.

Gdyby byto wiecej linii adresowych, bytaby mozliwo$¢ zaadresowania wigce]
niz 1 MB pamieci o 64 KB-17 B, gdyz 10FFEFH(1114095)-100000H (1048576)
=65519 bajtéw=64 KB-17 B.

W procesorach Intel 8086/8088 ze wzgledu na 20-bitowa szyn¢ adresows bit 21
jest obcinany. Natomiast w wyzszych procesorach, wspétpracujacych z 24- czy
32-bitowa szyna, 21 bit umozliwia zaadresowanie troche wigcej pamigei niz 1 MB o te
wiaénie 64 KB-17 B. W komputerach z procesorami 80286, 80386 i nowszymi obszar
64 KB-17 B nazywany jest pamigcia wysoka (ang. HMA).

Pamie¢ powyzej tej (pamigci) HMA, tzn. powyzej 1 MB+64 KB-17 B, nazywa
sige pamiecia rozszerzona. Dostanie si¢ do tej pamigci przy normalnym biegu pracy
komputera z procesorem 80286 i nowszymi nie jest mozliwe. Aby procesor mogt za-
adresowaé te pamieé, musi znaleZé si¢ w trybic wirtualnym. 16-bitowy rejestr seg-
' mentowy zawiera teraz na trzynastu bitach tzw. selektor segmentu — wskaZnik do

8-bajtowej struktury opisujacej dany segment, tzw. deskryptor segmentu, 2 bity zwia-
zane s3 z prawami dostepu do segmentu, 1 bit okresla, czy 6w wskaznik do 8-bajtowe;j
struktury dotyczy tzw. tablicy lokalnej, czy globalnej. W tym trybie procesor uzyskuje
zawrotne mozliwosci adresowania az do 4 GB.

Procesory 32-bitowe skladaja swdj adres logiczny z zawartodci 16-bitowego reje-
stru segmentowego i 32-bitowego przemieszczenia zawartego w rejestrze offsetowym.
Maja mozliwos¢ zaadresowania az 64 TB (TB=terabajt) pamigci.

Pamieé komputera PC, mimo iz jest adresowana w jednostkach 8-bitowych
(bajtach), to jednak wiele operacji wykonywanych jest na dtuzszych niz 1 bajt por-
cjach bitéw; s3 to stowa (dwa bajty), dwustowa, poczworne stowa itp. Jesli do pamieci
wpiszemy liczbe dziesigtna 1234, to okaze sig, ze cyfry 34 beda wystgpowac
,.wczesniej”, pod mtodszym adresem, nizeli cyfry 12. Gdy na przykiad cyfry 34 wy-
stgpowaé beda pod adresem DS:0000, to cyfry 12 znajda si¢ o bajt dalej, pod adresem
DS:0001, chociaz wydawatoby sie, iz powinno byé odwrotnie. Ten rodzaj przecho-
wywania informacji w pamigci nazywa si¢ przechowywaniem odwrotnym. Gdy pra-

Asembler - Podrecznik uzytkownika Strona:11

Podstawy Asemblera 13

cuje sie z bajtami, stowami 1 jeszcze dluzszymi danymi, trzeba mie¢ sie na bacznosci,
by nie wprowadzi¢ zamieszania i nie zapomnie¢ o odwrotnym przechowywaniu da-
nych w pamieci.

1.6. Wejscie/wyjscie

Procesor 8086 obstuguje urzadzenia wejscia 1 wyjscia w dwojaki sposéb — za pomoca
rozkazéw wejscia/wyjscia (rozkazéw I/O) i za pomoca adresowania pamieci. Niektdre
wejscia 1 wyjscia urzadzen sa kontrolowane przez porty, ktére okreslone sa adresami I/O

Adresy pamieci Adresy /O {port)

00000 0000

00001 0001

00002 0002

00003 0003

00004 0004

00005 0005

00006 0006

00007 0007

00008 0008

00009 0009

0000A 000A

0000B 000B
| I l |
I I | I
I | | I
I I | I
| [[[

FFFF4 FFF4

FFFF5 FFF5

FFFF6 . FFF6

FFFF7 FFF7

FFFF8 FFF8

FFFF9 FFF9

FFFFA FFFA

FFFFB FFFB

FFFFC FFFC

FFFFD FFFD

FFFFE FFFE

FFFFF FFFF

Rysunek 1.2. Adresy pamieci i adresy I/O dla procesoréw 8086/8088

Asembler - Podrecznik uzytkownika Strona:12

14 Asembler. Poradnik uzytkownika

w 64 KB przestrzeni adresowej oddzielonej od 1 MB przestrzeni adresowej pamieci (patrz
rysunek 1.2). Przestrzen adresowa I/O jest o wiele mniejsza niz 1 MB przestrzen pamieci
1 dla 8086 ma warto$¢ 64 KB; w rzeczywistosci tylko 4 KB. Tym samym przestrzef adre-
sowa I/O nie jest uzywana do zapamigtywania wartosci, ale raczej do zapewnienia wlasci-
wego sterowania urzadzeniami wejscia/wyjscia, np.: modemem, drukarka, karta dZwieko-
- wa itd. Adresy wejscia/wyjscia /O moga by¢ dostepne za pomoca specjalnych rozkazéw,
IN 1 OUT, ktére tylko do tego celu stuza. Na przyklad rozkaz OUT DX,AL przesyta za-
warto$¢ rejestru AL do portu I/O przez wybrany rejestr DX,

Niektére wyjscia urzadzei maja odwzorowania w pamieci i sa one kontrolowane
przez adresy pamigci, a nie przez porty 1/O. Tak czeéciowo rzecz sie ma z monitorami,
ktére maja swe odwzorowania w 1 MB pamieci, a réwnoczesénie, dla niektdrych ich
funkcji, mozna nimi sterowaé za pomoca rozkazéw 1/O.

1.7. Przerwania; wektory przerwan

Przerwania sa dzialaniami, za pomocg ktérych zewnetrzne ukfady — w stosunku
do jednostki centralnej, CPU, (ang. Central Procesor Unit) — sygnalizuja zajscie jakie-
gos zdarzenia (np. wcisnigcia klawisza) i zadaja okreslonego dziatania. System BIOS
1 system operacyjny (zwykle jest to DOS) wprowadzaja swoje przerwania programo-
we, aby przywotac i wykonac specjalne programy obstugi (patrz BIOS — rozdziat 3).
Przyjrzyjmy si¢ jednak najpierw mechanizmowi samego przerwania.

Gdy zachodzi przerwanie, sterowanie nad komputerem przejmuje program ob-
stugi przerwan, ktory zwykle znajduje si¢ w pamieci ROM. Program ten przywoty-
wany jest przez zaladowanie jego adresu segmentowego do odpowiednich rejestréw
procesora; pelny adres zawarty jest w parze rejestrow CS i IP (patrz Rejestry — roz-
dzial 2). Adresy segmentowe potrzebne do zlokalizowania programdéw obstugi prze-
rwaf nazwane zostaty wektorami przerwania.

Wektory przerwan ustawione sg w stan poczatkowy w czasie uruchamiania kom-
putera 1 wskazujg na programy obstugi przerwan zawarte w pamieci ROM (ROM,
pamie€ tylko do odczytu — patrz rozdziat 3). Te wektory przerwan przechowywane sa
w postact tabeli w pamigci RAM jako para stéw z adresem wzglednym — pierwsze
stowo, 1 z czgscig segmentowa — drugie stowo. (RAM — pamiec¢ do odezytu i zapisu,
poczatek obszaru konwencjonalnej pamigci RAM w komputerze PC zaczyna si¢ od
adresu 0, a kofczy na 640 KB). Ta para stéw przechowywana jest w pamigci w spo-
s6b odwrotny (np. odczytany w pamieci wektor przerwan 54FF0O0FO nalezy czytaé
FOOO:FF54, SEGMENT:OFFSET). Wektory przerwan mozna zmienia¢ tak, aby
wskazywaly nowe programy obstugi przerwan.

W rodzinie komputeréw PC istnieja trzy gtéwne kategorie przerwan. Pierwsza,
to takie przerwania, ktére generowane sq przez obwody komputera w odpowiedzi na
jakie§ zdarzenia, np. nacis$niecie klawisza. Przerwania te sg obstugiwane przez ste-

Asembler - Podrecznik uzytkownika Strona:13

Podstawy Asemblera 15

rownik(i) przerwan 8259, ktéry ustawia te przerwania w kolejnosci ich waznosci,
zanim przesle je do jednostki centralnej (CPU) w celu ich wykonania. Druga kategoria
to przerwania generowane przez CPU jako pewnego rodzaju produkt uboczny wyjat-
kowych dziatan programu, np. dzielenie przez 0. Trzecia kategoria przerwan to prze-
rwania celowo generowane przez programy jako sposéb wywotania odlegtych pod-
programéw przechowywanych w pamieci RAM lub ROM. Przerwania te, zwane prze-
rwaniami programowymi, sa czedcia sklfadowa ROM-BIOS 1 systemu operacyjnego.
Mozliwa jest zmiana programoéw obstugi przerwan badZ napisanie nowych (gdy zaist-
nieje taka potrzeba). Aby w programie przywotywaé przerwania programowe, nalezy
uzywaé rozkazu INT z argumentem okreslajgcym numer przerwania, liczba od 0 do
255. Na przyktad: INT 10H — przerwanie nalezace do systemu BIOS obstugujace
ekran monitora, INT 21H — przerwanie nalezace do systemu operacyjnego DOS za-
wierajace rézne ustugi systemowe itp. (patrz rozdzial — Tablica wektoréw przerwan).

Istnieje jeszcze jeden, specjalny typ przerwan, zwany przerwaniami niemasko-
walnymi (NMI — ang. non-maskable interrupts), stosowany do wywolania natychmia-
stowej uwagi jednostki centralnej. Przerwania te najczesciej sygnalizuja jakie§ sytu-
acje niebezpieczne, np. spadek napigcia, btad pamigci. Gdy przesylane jest to prze-
rwanie, zachowywane jest bezwzgledne pierwszefistwo i jednostka centralna, CPU,
przetwarza je przed wszystkimi innymi przerwaniami. Niezaleznie jednak od tego,
w jaki sposéb przerwanie zostalo wytworzone, urzadzenie wywolujace je nie musi
zna¢ adresu pamieci odpowiedniej obstugi przerwania, musi zna¢ tylko numer prze-
rwania. Numer przerwania wskazuje tabel¢ przechowywana od najnizszych adresow
pamieci, zawierajaca adres segmentowy podprogramu obsfugi przerwania. Ten adres
obstugi przerwania nazywa si¢ wektorem przerwania. Gdy sami tworzymy nowe pod-
programy obsfugi przerwan, wdwczas nadajemy im juz istniejagce numery wektory
przerwafi (podpinamy procedure pod istniejacy numer przerwania) albo nadajemy im
nowe numery.

Asembler - Podrecznik uzytkownika Strona:14

2. Rejestry

Jak juz wczesnie] wspomniano, rejestry to bardzo szybkie elementy elektroniczne
posiadajace zdolno$¢ zapamigtywania informacji. Wewnatrz 8086/8088 znajduje si¢
14 rejestrow, za pomocg ktérych mozna przesytac i1 przetwarza¢ dane. Te wewngtrzne

15 Numer bitu
FLAGS Rejestr
flagowy
15 7)
AX AH AL
BX| BH BL Rejestry
powszechnego
CX CH CL stosowania
DX DH DL !
S|)
DI Rejestry
wskaznikowe
BP i indeksowe
SP 4
Wskaznik
IP e S
rozkazow
cS 7
DS Rejestry
ES segmentowe
SS)

Poszczegdline bity rejestru flagowego

Numer bitu

15

F

D
F

|
F

T
F

S
F

F L

OF - flaga nadmiaru {(ang. overflow flag)

DF - flaga kierunku {ang. direction flag)

IF - flaga zexwolenia na przerwanie (ang. Interupt enable flag)
TF - flaga pracy krokowej (ang. trap flag)
SF - flaga znaku {(ang. sign flag)

ZF - flaga zera {ang. zero flag)

AF - flaga przeniasienia pomocniczego (ang. auxiliary flag)

PF - flaga parzystosci (ang. parity flag}

CF - flaga przeniesienia {(ang. carry flag)

Rysunek 2.1. Rejestry procesora 8086

Asembler - Podrecznik uzytkownika

Strona:15

18 Asembiler. Poradnik uzytkownika

rejestry, rozciagajace si¢ na obszarze 28 bajtow, sa w stanie czasowo przechowywacd
dane, adresy pamieci, wskazniki rozkazow i1 stanéw oraz znaczniki (flagi) sterujace;
poprzez nie procesor ma dost¢p do ponad 1 MB pamigci i do 64 KB portéw 1/0. Za-
sadniczo kazdy z rejestrow ma swoje zadanie do spetnienia, kazdy z nich pelni swoja
role 1 daja si¢ one pogrupowac wedtug podobnych zadan:

* rejestry powszechnego zastosowania,

* rejestry segmentowe,

* rejestry wskaznikowe i indeksowe,

* wskaznik rozkazéw,

* rejestr znacznikow (rejestr flagowy) — FLAGS.

2.1. Rejestry powszechnego zastosowania

Osiem rejestréw powszechnego zastosowania (kazdy o dtugosci 16 bitéw) sg uzy-
wane do najczesciej stosowanych rozkazéw, jako miejsce, skad pobieramy dane, miejsce
przeznaczenia, wskazniki do pamigci i wreszcie jako liczniki. Kazdy z tych o$Smiu reje-
strow moze by¢ zaladowany zaréwno z pamigci, jak tez z nich mozna do pamigci zala-
dowac, mozna ich uzywac do operacji arytmetycznych 1 logicznych. Na przykfad:

MOV AX.89 ;przeslij do rejestru AX dang 89
MOV DX, 10 ;przeslij do rejestru DX dang 10
ADD AX,DX ;dodaj te dwie liczby 89 i 10, a wynik przeslij do rejestru AX

Rejestry CX, SI lub inne rejestry powszechnego zastosowania moglyby zastapi¢
uzyte w tym przykladzie rejestry AX lub DX z réwnie dobrym powodzeniem.

Pomimo wspdlnych cech rejestrow powszechnego zastosowania, kazdy z nich,
Z osobna, ma swojg ,,080bowo§¢”.

* Rejestr AX — znany jako akumulator. Uzywany zawsze tam, gdzie zachodzi
mnozenie, dzielenie. Jest to najbardziej efektywny rejestr uzywany w operacjach
arytmetycznych, logicznych, przesytania danych. Dolna, 8-bitowa czes¢ rejestru
AX nosi nazwe AL (ang. A-Low), cze$¢ gérna, tez 8-bitowa, nosi nazw¢ AH
(ang. A-High). Taki podzial rejestru na dwie 8-bitowe czesci jest wygodny pod-
czas dziafan na danych 1-bajtowych, tworzac dwa niezalezne rejestry.

MOV AH,1 ;przeslij do rejestru AH wartos¢ 1
MOV AL,AH skopiuj wartosc AH do AL
DEC AL ;odejmij (zmniejsz, dekrementuj) o 1 zawartoSc rejestru AL

Asembler - Podrecznik uzytkownika Strona:16

Rejestry 19

W wyniku tych rozkazéw rejestr AX ma wartos¢ 1.
W powyzszym przykladzie rejestry BX, CX i DX moglyby tez wzia¢ udziat jako
rejestry 16-bitowe lub jako dwa rejestry 8-bitowe.
* Rejestr BX — moze wskazywaé potozenie, lokalizacje w pamieci. 16-bitowa
wartos¢ zapamigtana w tym rejestrze moze by¢ po czesci uzyta do adresowania

pofozenia w pamigci. Na przyktad, do rejestru AL tadowana jest zawartosé pa-
mieci spod (umownego) adresu 6:

MOV AX,O sprzeslij do rejestru AX wartoscé ()

MOV DX,AX ckopiuj wartosé AX do DX
MOV BX.6 .przeslij do rejestru BX wartos¢ 6
MOV AL, [BX] ‘przeslij do rejestru AL zawarto$¢ pamigci spod adresu 6

LAY

Domyslnie rejestr BX, wraz z rejestrem segmentowym DS, jest uzywany jako
wskaZnik pamigci. Rejestr BX moze by¢ traktowany jako dwa 8-bitowe rejestry — BH
iBL.

* Rejestr CX — uzywa si¢ go gléwnie jako licznika odliczajacego powtarzajace sie
fragmenty programéw badZ pojedynczych rozkazéw. Na przyktad:

MOV CX,5 przestif do rejestru CX wartosé 5

Iaczynaj_petle: setykieta o nazwie Zaczynaj petle

GO ,powtarzane rozkazy

SUB CX,1 ;odejmuj (za kazdym razem) od rejestru CX wartosc 1
Inz Zaczynaj_petle Jjesli nie zero (w CX) skocz do etykiety Zaczynaj_petle

Przytoczony wyzej fragment programu, przedstawiajacy sposéb tworzenia petli,
moze tez by¢ zorganizowany w inny sposéb, przy uzyciu innego rozkazu LOOP.
Rozkaz LOOP odejmuje 1 od rejestru CX, nastepuje skok, jesli CX nie jest rowne
zeru, jak w ponizej podanym przykfadzie:

OV CX,5 ;przeslij do rejestru CX wartosc 5

laczynaj_petle: cetykieta o nazwie Zaczynaj petle
Gooo ;powtarzane rozkazy
loop Zaczynaj_petle Jjesli nie zero (w CX) skocz do etykiety Zaczynaj petle

Rejestr CX moze by¢ traktowany jako dwa 8-bitowe rejestry, CH i CL.

* Rejestr DX — jego gléwnym przeznaczeniem jest uzycie go jako wskaznika ad-
reséw w rozkazach IN i QUT - rozkazy I/O (wejscia/wyjscia). Nie ma bowiem

Asembler - Podrecznik uzytkownika Strona:17

20 Asembler. Poradnik uzytkownika

innej drogi do zaadresowania portéw, anizeli uzycie rejestru DX. Nastepujacy
przyktad pokazuje zapis danej o warto$ci 35 do portu o numerze 45:

MOV AL,35 ;przeslij do rejestru AL wartosc 35
MOV DX, 45 ;przeslij do rejestru DX wartosc 45, nr portu
OUT DX,AL swyprowad? bajt z portu 45 do rejestru AL

Rejestr DX moze byé uzyty w operacjach mnozenia i dzielenia. Gdy dzielimy
32-bitowa dzielna przez 16-bitowy dzielnik, ,.gérne” 16 bitéw dzielnej musi by¢
umiejscowione w DX; po dzieleniu reszta z dzielenia zapamigtywana zostaje w DX.
(,,Dolne” 16 bitéw dzielnej musi by¢ umieszczone w rejestrze akumulatora AX, iloraz
zappmigtany jest w AX). Podobnie, gdy mnozymy dwie 16-bitowe liczby; ,.gorne”
16°bitéw iloczynu jest zapamigtane w DX (,,dolne” 16 bitéw iloczynu zapamietane
jest w AX). Rejestr DX moze by¢ traktowany jako dwa &-bitowe rejestry, DH 1 DL.

2.2. Rejestry wskaznikowe i indeksowe

e Rejestr SI — podobnie jak rejestr BX, moze by¢ uzyty jako wskaZnik pamigcl.

Na przykfad:
MOV AX,0 : ;przeslij do rejestru AX wartosc¢ 0
MOV DS,AX ;przeslij do rejestru DX zawartosc rejestru AX
MOV ST, 18 ;przeslij do rejestru SI wartos¢ 18
MOV AL,LSI] ;przeslij do rejestru AL zawarto$¢ pamigci spod adresu

DS:S1

Natomiast ciag rozkazow...
CLD znacznik kierunku DF przyjmuje wartosc¢ 0
MOV AX,0 ;przeslij do rejestru AX wartos¢ 0
MOV DS.AX . _. ;przeslij do rejestru DS zawartosc rejestru AX
MOV SI,18 ;przeslij do rejestru SI wartos¢ 18
LODSB ;przeslij bajt spod adresu DS:SI do rejestru AL

... nie tylko taduje rejestr AX (czes¢ AL), ale i dodatkowo zwig:ksia rejestr SI o 1
(DF=0).
Taki ciag rozkazéw moze by¢ bardzo efektywny podczas wykonywania rozka-
z6w taficuchowych, w ktérych przesytane sa ciagi tekstéw, znak po znaku.
» Rejestr DI — jest bardzo podobny w uzyciu do rejestru SI. Moze by¢ uzyty jako
wskaznik pamieci; ma specjalne wiasnodci, gdy zostanie zastosowany w rozka-
zach zwiazanych z taficuchami znakowymi. Na przykfad: '

Asembler - Podrecznik uzytkownika Strona:18

Rejestry 21

MOV AX.0 ;przeslij do rejestru AX wartosé ()

MOV DS,AX ;przeslij do rejestru DS zawarto$c rejestru AX
MOV DI, 1024 ;przeslij do rejestru DI wartos¢ 1024
ADD BL,[LDI] ;dodaj do BL zawarto$¢ pamieci spod adresu DS:DI

Rejestry DI i ST wespdt z rejestrem DS zwigzane sa z adresowaniem fancuchow
znakowych, z tym ze rejestr DI wystgpuje zawsze, gdy adresowanie dotyczy Zrédia
danych, za$ rejestr SI wystepuje woéwczas, gdy adresowanie to dotyczy przeznaczenia
(celu). Rejestry SI i DI uzyte jako wskaZniki pamigci z nie fancuchowymi rozkazami
odnosza si¢ zawsze wzgledem rejestru segmentowego DS. Na przyklad:

CLD ;znacznik kierunku DF przyjmuje wartosc¢ 0

MOV DX.0 ;przesiij do rejestru DX wartos¢ 0

MOV ES,AX ;przeslij do rejestru ES zawartosc rejestru AX

MOV DI,2048 ;przeslij do rejestru DI wartos¢ 2048

STOSB ;przeslij bajt z rejestru AL do pamieci adresowanej reje-

strami ES:DI

* Rejestr BP — podobnie jak BX, SI, DI — moze by¢ uzyty jako wskaZnik pamieci,
ale z pewna réznicg. Podczas gdy rejestry BX, SI, DI, wskazujac na adres w pa-
mieci odnosza sic wzgledem rejestru segmentowego DS, to rejestr BP, stuzac za
wskaZnik pamieci, odnosi si¢ do rejestru SS, rejestru segmentu stosu. Adresowa-
nie poprzez segment stosu, stosowane zwtaszcza w procedurach jezykéw C, Pas-
cal, dokonuje sie¢ wlasnie przy uzyciu rejestru BP. Na przyktad:

PUSH BP ;odloz na stos zawartosc rejestru BP

MOV BP,SP ;przeslij do rejestru bp zawartosc rejestru SP

MOV AX,[BP+4] ;przesliy do rejestru AX zawartos¢ stosu spod adresu
SS:[BP+4]

* Rejestr SP — znany jest jako wskaZnik stosu i nalezy do ostatnich rejestréw po-
wszechnego stosowania. Rejestr SP daje potozenie biezacego wierzchotka stosu
i jest analogiczny do IP. Umieszczanie wartosci na stosie (ang. pushing) dokony-
wane jest za pomocg rozkazu PUSH, a zdejmowanie warto$ci ze stosu (ang. pop-
ping) odbywa si¢ przy uzyciu rozkazu POP. Przyktad wraz z rysunkiem ilustruja
zmiany w rejestrach SP, AX i BX i na stosie, podczas wykonywania si¢ kodu;
przyjmujemy, ze poczatkowy stan rejestru SP ma wartosc 1:

MOV AX,1 ;przeslij 1 do rejestru akumulatora AX

Asembler - Podrecznik uzytkownika Strona:19

22 Asembler. Poradnik uzytkownika

PUSH AX ;odloz na stos zawartosc rejestru AX
MOV BX,2 ;przestij do rejestru BX zawartos¢ 2
PUSH BX ;odfdz na stos zawartosc rejestru BX
PUSH AX ;0dloz na stos zawartosc rejestiu AX
PUSH BX ;0dloz na stos zawartosc rejestru BX
0Od poczatku: e
AX | ? | 996 ?
BX | ? | 998 | ? |
SP 1000 [—— 1000 | _ ? |
et T TN
AX | 1 | 996 ?
BX | ? | 998 | 1 1
SP [998 lj 1000 ? i
T TN
AX | 1 l 996 2 |
BX 2 | 998 | 1 |
SP 996 | 1000 ?
I
AX 2 1 996 ? |
BX 2 | 998 | 1|
SP [998 W—F 1000 7
I
AX | 2 | 996 ?
BX | 1 | 998 | 1 |
SP [1000 —— 1000 ? |
]

Rysunek 2.2. Rejestry AX, BX, SP i stos

Jesli zmieniamy rejestr SP, to zmieniamy potozenie wierzchotka stosu i wéwczas
mozemy szybko doprowadzi¢ do katastrofy. Zmiany na stosie moga by¢ dokonywane
jedynie za pomoca rozkazéw operujacych na stosie. Za kazdym razem, gdy wywotu-
jemy podprogram lub wracamy zei do programu, stos jest uzywany. Reasumujac,
modyfikacje rejestru SP zostawmy rozkazom operujacym na stosie, wywolaniom pro-
cedur i powrotom z nich do programéw; nie dokonujmy bezposredniej modyfikacji
zawartos$ci tego rejestru.

2.3. Rejestry segmentowe

Podstawowg przestanka segmentacji pamigci jest to, iz procesor 8086 ma zdol-
nos¢ adresowania 1 MB pamieci. 20-bitowy sposéb adresowania pamieci wystarcza,

Asembler - Podrecznik uzytkownika Strona:20

Rejestry ‘ 23

by kazda komoérka 1 MB pamigci zostata zaadresowana. 8086 uzywa tylko 16-bito-
wego wskaznika do pamigci (dla przykfadu nalezy przypomnieé, ze 16-bitowy rejestr
BX moze by¢ uzyty do wskazania w pamigci). Jak wobec tego pogodzié 16-bitowe
wskaZzniki z 20-bitowa przestrzeniy adresowa? OdpowiedZ jest nastepujaca: 8086
skfada peiny 20-bitowy adres z dwéch czesci. Kazdy 16-bitowy wskaznik lub offset
pamigci jest sktadany z zawartoscia rejestru segmentowego do formy petnego 20-bi-
towego adresu. Warto$¢ segmentu jest przesuwana o 4 pozycje w lewo (mnozona
przez 16) i dopiero wéwczas jest dodawana do offsetu, tak jak pokazano to na rysunku.

16-bitowy 16-bitowy
rejestr segmentowy offset

Pomnozona przez 16
warto$é segmentu

+

20-bitowy adres pamigci

Rysunek 2.3. Obliczanie adreséw pamieci — schemat ogdlny

Wezmy pod uwage nastepujacy przyklad:

MOV AX,1000H ;przeslij 1000h do rejestru akumulatora AX

MOV DS, AX ;przeslij z rejestru AX do rejestru segmentowego DS
NOV SI,201H preeslij 201h do rejestru SI
MOV DL, [SI] ;przeslij do rejestru DL zaw. pamigci spod adresu DS:201h

Do rejestru DL tadowana jest warto$¢ spod adresu ((DS*16)+SI), czyli w tym
przykfadzie ((1000H*16)+201H)=10000H+201H=10201H szesnascie (dziesietnie)
w systemie szesnastkowym ma warto§¢ 10H.

Poprzedni, ogélny schemat adresowania nabierze teraz konkretnej tresci — w spo-
s0b pokazany na rysunku.

Asembler - Podrecznik uzytkownika Strona:21

24 Asembiler. Poradnik uzytkownika

DS 1000h Si 201h
o D
10000h
Adres
pamieci 10201h

Rysunek 2.4. Obliczanie adreséw pamigci

Podczas programowania musimy zawsze uzywac adresu pamigci w postaci pary
SEGMENT:OFFSET. Wszystkie rozkazy i tryby adresowania procesora 8086 do-
my$Inie odnosza sie do jednego lub wielu rejestrow segmentowych, jednakze niektore
rozkazy moga byé jawnie przypisane do takiego rejestru segmentowego, jakiego sobie
zyczymy. Rzadko fadujemy rejestry segmentowe za pomoca liczb, natomiast tadujemy
je wpisujac w programie Zrédtowym ich nazwy, ktore nastepnie przeksztalfcane sa
w liczby w czasie asemblacji, konsolidacji i uruchamiania programu. Uzycie nazw
segmentéw umozliwia wlasciwa wspdipracg migdzy systemem operacyjnym a Asem-
blerem. W Turbo Asemblerze, o ktérym tu gtéwnie bedzie mowa, najczesciej przy-
wolywana nazwa segmentu jest @data, wskazujaca na domyS$lny segment danych;
gdy uzyto uproszczonych dyrektyw.

W przyktadzie:

.MODEL small

- .DATA

IZml DW 0
.CODE

mov ax,@data
mov ds,ax

END

Asembler - Podrecznik uzytkownika Strona:22

Rejestry 25

DS tadowany jest wartosciag domySlnego segmentu danych, w ktérym miesci sie
zmienna Zml. Uzycie segmentéw w procesorze 8086 ma wiele implikacji. Po pierw-
sze, tylko 64 KB bloki pamigci daja si¢ adresowaé poprzez rejestry segmentowe, po-
niewaz 64 KB jest maksymalng iloscia pamigci, ktéra moze by¢ zaadresowana przy
uzyciu 16-bitowego offsetu (2”’=65536:1024=64); ten sposob adresowania jest, nie-
stety, przeszkoda do manipulowania wigkszymi (niz 64 KB) blokami danych. Po dru-*
gie, dane potozenie w pamieci moze by¢ zaadresowane na wiele kombinacji SEG-
MENT:OFFSET. Na przykfad, adres 100H moze byé zapisywany: 0:100H, 1:FOH,
2:EOH itd.

Tak jak rejestry powszechnego stosowania odgrywaja swoje specyficzne role, tak
tez rejestry segmentowe przeznaczone sg do wyspecyfikowanych zadan.

Rejestr CS wskazuje kod programu, rejestr DS wskazuje dane, rejestr SS zwia-
zany jest ze stosem, za$ rejestr ES (ang. extra segment) jest dodatkowym rejestrem,
ktory moze by¢ gdzie§ potrzebny.

* Rejestr CS — wskazuje na poczatek 64 KB bloku pamigci lub na segment kodu,
w ktorym rezyduje nastepny do wykonania rozkaz. Doktadne pofozenie tego roz-
kazu w segmencie kodu wskazywane jest poprzez offset, ktérego warto§é za-
wiera rejestr IP. Petny adres pofoZenia rozkazu w segmencie kodu ma postaé:
CS:1P. Procesor 8086 nigdy nie pobiera rozkazéw z segmentu innego niz seg-
ment CS. Rejestr CS moze by¢ zmieniony przez niektére rozkazy, wlaczajac w to
rozkazy skokow, wywotan i powrotéw. Rejestru tego nie mozna fadowad bezpo-
Srednio.

* Rejestr DS — wskazuje poczatek segmentu danych, czyli 64 KB blok pamieci
zawierajacy argumenty. Zazwyczaj rejestrami stowarzyszonymi z DS, okreslaja-
cymi offset w tym segmencie sy rejestry BX, SI lub DI,

* Rejestr ES - wskazuje poczatck 64 KB bloku pamieci, zwanego dodatkowym
segmentem. Jak wskazuje nazwa segmentu, (ang. extra segment), nie jest on
przypisany do pojedynczych zastosowail; stosowany jest do réznych pojawiaja-
cych si¢ potrzeb. Niekiedy ten extra segment uzyty jest do utworzenia dodatko-
wego 64 KB bloku pamigci potrzebnego do przechowywania danych, jednakze
z nieco mniejsza dostepnosciy do tych danych anizeli z przeznaczonego w tym
celu segmentu danych. Rejestr ES uzywany jest w rozkazach taincuchowych.
Wszystkie te rozkazy (faficuchowe), ktére zapisuja do pamieci, uzywaja pary re-
Jestrow ES:DI. Rejestr ES uzywany jest w tych rozkazach wszedzie tam, gdzie
dokonywane sg operacje na blokach pamigci, kopiowanie, poréwnywanie, prze-
szukiwanie, czyszczenie.

* Rejestr SS — wskazuje poczatek 64 KB bloku pamigci, zwanego segmentem
stosu. Wszystkie rozkazy, ktére niejawnie uzywaja rejestru SP — odkladanie na
stos, zdejmowanie ze stosu, wywolania i powroty — uzywaja segmentu stosu, po-
niewaz rejestr SP jest zdolny tylko do adresowania pamieci w obszarze segmentu

Asembler - Podrecznik uzytkownika Strona:23

Asembler. Poradnik uzytkownika

24.

stosu SS. Réwniez rejestr BP — o czym byla juz mowa — odnosi si¢ tez do seg-
mentu stosu; stad tez rejestr BP jest uzywany do adresowania parametrow
i zmiennych zawartych na stosie.

Wskaznik rozkazow

Rejestr IP — nazywany jest wskaZnikiem rozkazéw i zawiera zawsze offset pa-
mieci, w ktérym zawarty jest nastgpny rozkaz do wykonania. Bazowy adres
segmentu kodu zawarty jest w rejestrze CS. Pelny adres logiczny wykonywanego
rozkazu wskazywany jest wigc przez parg rejestrow CS:IP.

Gdy jeden rozkaz jest wykonywany, wskaznik rozkazéw ustawiany jest do na-

stepnego adresu pamieci, pod ktérym znajduje si¢ rozkaz do wykonania. Zazwyczaj
nastepnym rozkazem w pamieci jest wlasnie rozkaz, ktéry bedzie wykonywany. Jed-
nakze niektére rozkazy, takie jak rozkazy wywotania i skoku, moga spowodowacl
rozgatezienie w wykonywaniu kodu programu, a tym samym w rejestrze IP nie wy-
stapi kolejna warto$¢ offsetu wskazujaca nastgpny rozkaz do wykonania.

2.5.

Rejestr znacznikow

Rejestr znacznikow (rejestr flagowy) — FLAGS jest czternastym i ostatnim re-
jestrem procesora 8086. Rejestr ten jest zbiorem poszczegélnych bitéw kontrol-
nych, zwanych znacznikami (flagami), ktére wskazuja wystapienie okreslonego
stanu, Znaczniki moga byé wykorzystywane zaréwno przez procesor, jak tez
i programiste. Niedo$wiadczony programista nie powinien dokonywa¢ jakich-
kolwiek zmian stanu znacznikéw rejestru FLAGS, jesli nawet potrafi dostac si¢
do tego rejestru (patrz: Rysunek 2.1. Rejestry procesora 8086, oraz Tabela 5.1.
Stan znacznikow (flag) procesora).

Asembler - Podrecznik uzytkownika Strona:24

3. Oprogramowanie systemowe
DOS i BIOS

Oprogramowanie systemowe kieruje cafa ztozonoscig potaczen wystepujacych
pomigdzy poszczegdlnymi urzadzeniami. Dwoma gféwnymi sktadnikami tego opro-
gramowania sa BIOS (Basic Input/Output System) i DOS (ew. Windows).

Programy zawarte w pamigci BIOS logicznie umieszczone sa migdzy naszymi
programami, wraz z DOS/Windows, a sprzgtem. BIOS z jednej strony otrzymuje od
(naszych) programéw wykonania standardowych ustug zwiazanych z obstuga urza-
dzenn wejscia/wyjscia. Ustugi te wzywane sa przez programy za pomoca kombinacji
numeru przerwania (przerwania BIOS) i numeru ustugi. Uzycie tej kombinacji wska-
zuje na rodzaj ustugi, np. obstuga drukarki. W druga strone BIOS komunikuje si¢
z urzadzeniami komputera, monitorem, dyskami itd., uzywajac odpowiednich dla da-
nego urzadzenia koddéw rozkazéw. Od tej strony BIOS obstuguje tez przerwania
sprzgtowe, ktore sa generowane przez urzadzenia ,.chcace zwrécié na siebie uwage”.
Na przykfad, naci$ni¢cie klawisza powoduje, ze klawiatura generuje przerwanie, by
o tym co zaszlo, zaraz zawiadomié BIOS.

Oprogramowanie BIOS zapisane jest w kostce pamigci ROM, znane pod nazwa
ROM-BIOS (Read Only Memory — Basic Input/Output System) i mozna odczytaé je
tylko jako ciag asemblerowych rozkazéw. DOS (Disc Operating System) ew. Win-
dows jest programem, ktdry kontroluje komputer 1 jego zasoby od momentu jego wia-
czenia az do wylaczenia.

Poprzez funkcje DOS programy uzytkowe moga czytaé pliki, zapisywaé je do
pamieci, kontrolowaé naciskanie klawiszy klawiatury, uruchamiaé inne programy,
ustawiac date i czas. Na przyktad:

MOV AH,2 Junkcja DOS wyswietlajgca znaki

MOV DL,'S’ ;S jest znakiem do wyswietlenia
INT 21H ;wezwij DOS w celu wykonania tej funkcji

Funkcji DOS uzywa si¢ w celu wsparcia operacji zwigzanych z wprowadzaniem
plikéw przy uzyciu klawiatury, wyprowadzeniem pliku na ekran monitora badZ na
drukarke. Tam gdzie tylko powinno uzy¢ sie funkcji DOS, nalezy zdecydowanie ich
uzywac, aczkolwiek w niektdérych przypadkach wyraZnie trzeba uzy¢ funkcji BIOS.

Asembler - Podrecznik uzytkownika Strona:25

28 Asembiler. Poradnik uzytkownika

Oprogramowanie uzytkowe

DOS

Dostepny poprzez funkcje przerwania
DOS INT 21H i inne przerwania

3

BIOS

Dostepny poprzez funkcje BIOS
jako rézne jego przerwania

Sprzet IBM PC

Karta sterujaca monitorem, klawiatura, drukarka,
dysk, mysz, joystick itd. Dostepny poprzez porty /O
i/lub odpowiednie miejsca w pamigci.

Rysunek 3.1. Oprogramowanie systemowe BIOS i DOS

Funkcje DOS w pelni spetniajg potrzeby programisty zwiazane z wejsciem/wyj-
§ciem i wykonaniem programu. Takim typowym przeznaczeniem funkcji DOS jest
,,obserwacja” naciskania klawiszy na klawiaturze komputera PC. DOS dostarcza wielu
funkcji dajacych wiele cennych rezultatéw dla programisty asemblerowego. Cho-
ciazby w przypadku ,,prostego” naciskania klawiszy najprostsza funkcja DOS z tym
zwiazang jest funkcja numer 1, funkcja czytania znaku z klawiatury z echem. Funkcje
DOS sa przywolywane, gdy numer tej funkcji umiescimy w rejestrze AH, a nastgpnie
wykonamy rozkaz wywotania przerwania 21H, czyli rozkaz INT 21H. Na przyktad:

MOV AH,1 funkcja DOS odczytujgca znaki z klawiatury
INT 21H ;wezwij DOS w celu wykonania funkcji (odczytaj znak)

* w .

Asembler - Podrecznik uzytkownika Strona:26

Oprogramowanie systemowe DOS i BIOS 29

Po wykonaniu tej sekwencji rozkazéw w rejestrze AL znajdzie sie odczytany
znak wpisany z klawiatury. Funkcja czeka, az zostanie naci$niety klawisz. Jeéli ode-
brany (funkcja numer 1) znak chcemy uwidoczni¢ na ekranie, musimy uzy¢ funkcji
systemowe] o numerze 2. W funkcji tej wartos¢ uzyskanego w rejestrze AL kodu zna-
ku nalezy wpisac do rejestru DL. Na przyktfad:

MOV AH,1 Junkcja DOS odczytujqca znaki z klawiatury

INT 21H ;wezwi] DOS w celu wykonania funkcji (odczytaj znak)
MOV AH,2 Junkcja DOS wyswietlajgca znaki

MOV DL,AL ;przenies znak (uzyskany z funkcji numer 1) z AL do DL
INT 21H swezwij DOS w celu wykonania funkcji (wyswietl znak)

DOS ma jeszcze wiele innych ciekawych funkcji operujacych na znakach. Moz-
na przy jego uzyciu odczytac badZ wyswietli¢ nie tylko pojedynczy znak, ale tez caty
taficuch znakow. (Podobnic tez dziatajg funkcje w jezyku C i Pascal: instrukcja scanf
i printf, a w Pascalu write). Aby méc prawidlowo zakonczy¢ program, bez jego za-
wieszenia si¢, koniecznie trzeba uzy¢ funkcji 4CH, i o tej funkcji nalezy bezwzgle-
dnie pamigtac. Ponizej pokazano prosty program z poznanych funkcji DOS, bez do-
kfadniejszego komentarza nie poznanych jeszcze instrukcji programowych.

(Uwaga! We wszelkich programach asemblerowych wielko$¢ znakéw nie odgry-
wa roli, jednakze dla zaznaczenia waznosci rozkazéw, przerwan itp. w ksiazce tej za-
pisywane sg duzymiznakami).

MODEL small

.STACK 100h
.CODE
Echo_Skok: cetykieta Echo Skok (etykieta zakoriczona dwukropkiem)
MOV AH,1 Jfunkcja DOS odczytujgca znaki z klawiatury
INT 21H ;wezwif DOS w celu wykonania tej funkcji
CMP AL,13 ;czy nacisnigto klawisz [Enter]?

J(kod klawisza [Enter]=13)
JZ Echo_Skok ;jesli tak (tzn. gdy wartoS¢ w AL=13), to idz do Echo_Skok
MOV DL,AL ;przenies znak z AL do DL
MOV AH,2 Junkcja DOS wyswietlajgca znaki
INT 21H ;wezwij DOS w celu wykonania funkcji (wyswietl znak)
JMP Echo_Skok ;skocz (bezwarunkowo) do etykiety Echo_Skok
Echo_Gotowe: setykieta o nazwie Echo_Gotowe
MOV AH, 4CH Jfunkcja wykonania programu
INT 21H ;wezwij DOS w celu wykonania funkcji (wykonaj program)
END

Asembler - Podrecznik uzytkownika Strona:27

30 Asembler. Poradnik vzytkownika

3.1. Funkcje BIOS

Czasami funkcje DOS nie zaspokajaja zadafi programistéw, wowczas nalezy sie
zwrécié do BIOS. Odmiennie niz DOS oraz programy uzytkowe, BIOS nie jest fado-
wany z dysku, lecz jest on zapamigtany w pamigci ROM (ang. Read Only Memory),
z ktérej mozna tylko go odczytywac. BIOS jest oprogramowaniem komputera PC
polozonym najnizej; funkcje BIOS uzupetniaja DOS w zakresie kontroli nad sprze-
tem. Ze wzgledu na pewne réznice w oprogramowaniu BIOS powinniSmy raczej
uzywaé funkcji DOS niz BIOS, by tym samym unikna¢ konfliktéw programowych dla
réznych modeli komputeréw PC. Sposréd wielu zastosowan funkcji BIOS jednym
z nich jest uzycie go w celu sterowania monitorem ekranowym. Tylko przez przywo-
tywanie funkcji BIOS mozna ustawi¢ tryb pracy monitora, mie¢ kontrolg nad kolora-
mi, sposobem wy§wietlania itp., na przyklad:

MOV AH,0 ;tryb ustawienia BIOS

MOV AL.4 ;nr trybu dla 4-kolorowej grafiki 320x200 (CGA)
INT 10H ;wykonaj przerwanie BIOS ustawiajgce tryb video

Niekiedy tez sie zdarza, ze musimy mie¢ programowy kontakt bezposrednio
z portami szeregowymi, wéwczas uzywamy rozkazow IN 1 OUT.

Asembler - Podrecznik uzytkownika Strona:28

4. .. Towarzvsze” stownego
%9

procesora

Gi6wny procesor nie moze sterowac calym komputerem, a nawet nie powinien.
Ma tyle wlasnych zadai, iz nie ma czasu na inne zajgcia. A tych innych zajgé jest co
nie miara. Przeciez trzeba sterowaé przeplywem informacji w obwodach wewnetrz-
nych lub migdzy komputerem a urzadzeniami do niego podiaczonymi, takimi jak mo-
nitor ekranowy, dysk, podawaé wielofazowe réwnomierne sygnaly dla giéwnego pro-
cesora i tzw. urzadzen peryferyjnych. Nie sposob byloby w tej ksiazce nazwad
wszystkich elektronicznych towarzyszy procesora gtéwnego. Wymienmy zatem i po-
krétce opiszmy przynajmniej kilka tych najwazniejszych, czy moze najczgsciej spoty-
kanych w praktyce programistycznej. Zdarza si¢, iz mlodzi adepci asemblerowi, gdy
tylko zakosztuja ,,owocu z drzewa Dobrego i Zlego”, od razu chca oprogramowywac
wszystkie te chipy, ktdrych — przynajmniej na poczatku swoich do§wiadczefi z Asem-
blerem — nie powinno sie¢ oprogramowywac. Tych chipéw jest catkiem sporo, a naj-
bardziej znane sa:
a) sterownik przerwan 8259,
b) sterownik DMA, 8237A,
¢} licznik czasu 8253/8254,
d) UART 16450,

e) uklad MC14818, zwiazany z pamiecia CMOS-RAM i zegarem czasu rzeczywi-
stego,
f) uktad 8048 (8049) nadzorujacy siatke potaczen klawiszy na klawiaturze.

Nowe typy maszyn majg rozwiazania oparte na ukladzie 82C206, ktéry zastgpuje
kilka ukfadéw: sterownik(i) przerwan, sterownik(i) DMA, generator czasowy, uktad
CMOS-RAM. Stosowane ukfady 82C301 i 82C302 odpowiednio kontroluja relacje
CZasowe W systemie oraz pamigc.

Ad (a). Sterownik przerwafi 8259 nadzoruje dzialanie przerwan, przejmuje wszystkie
sygnaty idace od sprzetu, okresla ich poziom waznosci w stosunku do innych odbiera-
nych sygnaléw oraz wysyla przerwanie do CPU na podstawie poziomu waznosci.
Sterownik przerwaii moze obstuzy¢ 8 zadan przerwania réwnoczes$nie i moze byc
dotaczony do innego uktadu 8259 w celu zwigkszenia liczby obstugiwanych przerwan
do 15. Zazwyczaj bezposrednio nie programujemy sterownika przerwafi, gdyz moze

Asembler - Podrecznik uzytkownika Strona:29

32 Asembiler. Poradnik uzytkownika

to spowodowac zaktdcenie w podstawowych funkcjach dziatania komputera, jednakze
istnieje programowa mozliwo$¢ zmiany priorytetow przerwai w taki sposéb, by méc
dostosowad sterownik do wlasnych potrzeb.

Ad (b). Sterownik DMA odciaza gtéwny procesor od wielu czynnosci zwiazanych
z przesytaniem danych, np. z dysku i na dysk, w sposéb bezposredni, bez angazowa-
nia przy tym procesora gldwnego. Ten bezposredni dostep do pamieci (DMA — ang.
Direct Memory Access) realizowany jest za pomoca uktadu 8237A.

Uktady | R .
wej./wyj. [Procesor «—{ Pamie¢
.| Kontroler |
DMA)

Rysunek 4.1. Bezposrednia komunikacja ukladéw wejscia/wyjscia z pamiecia

Urzadzeniem wejScia/wyjscia moze by¢ kontroler dysku, kontroler streamera itp.
Do kazdego z tych urzadzen przyporzadkowany jest jeden z kanatéw DMA, logicz-
nych strumieni danych inicjowanych przez procesor. Kazdy uktad 8237A moze obstu-
giwacC cztery takie strumienie, a kaskadowe potaczenie tych dwdéch uktadéw umozli-
wia obstuge siedmiu kanatow DMA. Urzadzenie stowarzyszone z danym kanaftem
DMA wysyla sygnat zadajacy od DMA jego obstugi. Ukfad 8237A posiada swoje
wewnetrzne 16-bitowe rejestry, za pomoca ktdrych adresuje si¢ obszary pamieci RAM
(tzw. strony DMA) o wielkosci 64 KB; 2= =65536/1024=064. Programowanie ukfadu
8237A polega na wpisywaniu, poprzez procesor gtéwny, odpowiednich wartosci do
Jego rejestrow. Uklad 8237A posiada 27 rejestrow i sa one ,,widziane” przez procesor
gtéwny poprzez porty wejscia/wyjscia o odpowiednich adresach; rozkazy IN i QUT
stuzg do dziatania na adresach portéw wejscia/wyjscia.

Ad (c). Licznik czasu — ukfad 8253/8254 jest bardzo precyzyjnym, wielozadaniowym
licznikiem czasowym. Petni on funkcje zegara systemowego, od§wieza pamie¢ dyna-
miczna, obstuguje glosnik. Gdy w komputerze PC znajdujy sie dwa uktady 8254, dru-
gi z nich chroni system przed jego zupetnym zatamaniem si¢. Ukfad 8253/8254
otrzymuje od generatora zegara (uklad 8284A) prostokatny sygnal o czestotliwosci
1,19318 MHz. Programowanie licznika czasu sprowadza si¢ do odczytu portéw i ich
zapisu odpowiednimi warto$ciami.

Ad (d). UART 16450 - transmisja danych pomiedzy urzadzeniami dotaczonymi do
komputera moze mie¢ charakter transmisji rownolegtej lub szeregowej; z kolei szere-
gowa transmisja danych moze si¢ dokonywaé w sposdb synchroniczny i asynchro-
niczny. Nie wnikajac w szczegoly, nalezy jednak wyjasnié, ze szeregowy strumien

Asembler - Podrecznik uzytkownika Strona:30

in
st
ks

pc

st1
pr
le:
A
no
IZ¢
R/
SCi
Ac
zta
jes
kla
jes

»lowarzysze” gtéwnego procesora 33

informacji, zanim wptynie do réwnoleglej magistrali danych, nie moze by¢ w zadnym
stopniu uzyteczny, gdy wezesniej nie podda sie go specjalnemu przeksztalceniu. Prze-
ksztalcenie danych z postaci szeregowej na réwnolegla i odwrotnie dokonywane jest
poprzez uktad scalony typu 8250, 16450 lub 82450 zwany jako UART (ang. Universal
Asynchronous Receiver-Transmitter). UART posiada wiele wyspecyfikowanych reje-
stréw dostepnych programowo w przestrzeni adreséw portéw wejscia/wyjscia. Po-
przez te porty istnieje mozliwo$¢é dostosowania parametréw pracy uktadu UART za-
leznie od naszych potrzeb, zaprogramowania predkosé transmisji, formatu danych itp.

Ad (e). Uktad MC14818 spetnia dwa bardzo wazne zadania w komputerze PC, a mia-
nowicie zapamigtuje konfiguracje komputera PC oraz zawiera kalendarz i zegar czasu
rzeczywistego. Najwazniejsza czeScig tego ukladu jest 64-bitowa pamieé¢ CMOS-
RAM, z ktdrej mozna dane odczytywaé i do niej zapisywac. Dostep do tego uktadu
scalonego mozliwy jest poprzez funkcje BIOS i poprzez porty.

Ad (f). Ukfad 8048(8049) nadzoruje siatke polaczen klawiszy na klawiaturze. W we-
zlach siatki umieszczone sg poszczegélne klawisze. Glownym zadaniem ukfadu 8048
Jest §ledzenie klawiszy i przekazywanie informacji do ROM-BIOS, gdy jakikolwiek
klawisz zostanie wcisniety lub zwolniony. Uktad 8048(8049), kontroler klawiatury,
jest uktadem, ktéry moze by¢ zaprogramowany.

Asembler - Podrecznik uzytkownika Strona:31

5. Program uruchomieniowy
DEBUG

5.1. Polecenia

Programy uruchomieniowe, tzw. debuggery (ang. debugger, uruchamiacz), stuza
do uruchamiania programéw zapisanych w postaci plikéw *.EXE lub *.COM, umoz-
liwiajg testowanie zaréwno programéw w catogci, jak tez pewnych jego fragmentéw,
modyfikacj¢ programu, danych, wartosci poczatkowych rejestréw, zmiennych itp. Za
pomocg programéw uruchomieniowych mozemy utworzy¢ plik dyskowy, ktérego za-
warto$cia bedzie wybrany obszar pamieci operacyjne;.

Jednym z najbardziej znanych programéw uruchomieniowych jest program
DEBUG, dostarczany wraz z systemem operacyjnym. Po wpisaniu nazwy tego pro-
gramu 1 naci$nigciu klawisza [Enter] pojawi sig kreska jako znak gotowosci, do wpro-
wadzania polecedi. Gdy wpiszemy znak zapytania, wyswietli si¢ zbiér polecen dostep-
nych w programie DEBUG.

-7

asembluj A [adresl

poréwnaj C zakres adres

zrzué D [zakres]

wprowadZ E adres [listal

wypetnij F Tista zakresu

jdZ do G [=adres] [adresy]

hex H wartos$él wartos$é?

wprowadz I port

zataduj L Cadres] [dysk] [pierwszy sektor] [liczbal
przenie$ M zakres adres

nazwa N [§ciezkal [lista argl

wyprowadZz 0 port bajt

przejdz P [=adres] [1iczbal

zakohcz Q

rejestr R [rejestr]

szukaj S zakres 1ista

§ledZ T [=adres] [wartosc]

dezasembluj U [zakres]

zapisz W [adres] [dysk]l [pierwszy sektorl [liczbal
alokuj pamieé rozszerzong typu expanded XA [f#stron]

dezalokuj pamie¢ rozszerzong typu expanded XD [dojsciel

mapuj strony pamieci rozszerzonej XM [Lstronal [Pstronal [dojsciel
wySwietl stan pamieci rozszerzonej XS

Asembler - Podrecznik uzytkownika Strona:32

36 Asembler. Poradnik uzytkownika

Zacznijmy od polecenia A [adres] — asembluj (parametry umieszczone w nawia-
sach kwadratowych sa opcjonalne). Polecenie A pozwala na wprowadzenie rozkazow
mikroprocesora do pamigci operacyjnej komputera w postaci rozkazéw, mnemoni-
kéw. Parametr [adres] okresla miejsca umieszczenia asemblowanego programu, brak
tego parametru lokuje program pod adresem, ktéry wynika z aktualnej zawartosci
rejestréw CS 1 IP mikroprocesora. Programy, czy nawet pojedyncze rozkazy, ktore
bedziemy wpisywacd, nie sg zrozumiate dla procesora 1 muszg by¢ przed zatadowaniem
do pamieci 1 wykonaniem przettumaczone na jezyk wewnetrzny. W tym przypadku
tlumaczenie to odbywa si¢ za pomocg programu ttumaczacego DEBUG, ktéry czyta
wpisywane kody Zrédlowe w postaci mnemonikéw i zamienia je w program wyniko-
wy W jezyku wewngetrznym.

Nalezy przypomnieé, iz program ttumaczacy — translator jezyka asemblerowego
— réwniez nazywa si¢ asemblerem, tak jak jezyk, jednakze w kontekscie zawsze wia-
domo, o jaki asembler chodzi. W piS$mie nazwe jezyka Asembler rozpoczynamy duzg
litera, a jako translator jezyka asemblerowego — malg litera.

Uwaga! Wszelkie komentarze umieszczane bgda po znaku $rednika, polecenia
- zostang wytluszczone. Po znaku §rednika ,,;”” umieszcza si¢ tez komentarze w Zrédto-
wych programach asemblerowych.

-A ;wpisujemy polecenie A (mata lub duza litera), naciskamy [Enter]
;aby wyjsc z trybu asemblacji naciskamy klawisz [Enter] lub [Ctrl+C]
10A2:0100 ;wartoS¢ 10A2 znajduje sie w rejestrze CS, natomiast 0100 w IP, wartos¢

;rejestru CS jest w danej chwili taka, jakq wskaze procesor, natomiast wartos¢

;rejestru [P bedzie zawsze w tym programie DEBUG jednakowa, 0I100H.

Zawarto$é wszystkich rejestréw procesora oraz stan flag bedzie mozna zobaczyd,
jesli wprowadzi si¢ polecenie R, bez parametru [rejestr]. Gdy natomiast chcemy obej-
rze¢ zawarto$¢ zadanego rejestru, wpisujemy R z parametrem rejestr, np. RAX.

Wydajmy polecenie A; kursor ustawia si¢ za aktualng wartoscia adresu CS:IP do
trybu wpisywania rozkazéw. Gdy naci$niemy [Enter], wprowadzamy kolejne polece-
nie R i znowu [Enter]. Przyjrzyjmy si¢ zawartosci rejestru AX; na pewno sa tam same
zera. Zrébmy maty eksperyment. Wracamy do trybu asemblacji, ponownie po kresce
piszemy polecenie A i [Enter]. Wprowadzamy rozkaz MOV AX,1234 1 naciskamy
[Enter] (wartosci liczbowe sa podawane i przyjmowane w postaci szesnastkowej).
Rozkaz MOV AX, 1234 zostal na razie wprowadzony do pamigci, program urucho-
mieniowy wskazuje nam kolejny adres, od ktérego zaczynac sie bedzie nastepny roz-
kaz, jesli tylko zechcemy go wpisaé. Gdy w trybie asemblacji rezygnujemy z wpro-
wadzania kolejnych rozkazéw, to naciskamy klawisz {Enter] 1 program DEBUG go-
téw jest do przyjmowania innych polece. WprowadZmy znéw polecenie R; widac
wyraznie, iz do pamieci operacyjnej zapisano rozkaz MOV AX,1234. Aby jednak
rozkaz ten zostal wykonany (w tzw. trybie krokowym), wydajemy polecenie T (bez

Asembler - Podrecznik uzytkownika Strona:33

Program uruchomieniowy DEBUG 37

parametréw). Rozkaz MOV AX,1234 zostal wykonany, tzn. do rejestru AX przestana
zostata warto$¢ 1234.

Mimo iz program uruchomieniowy DEBUG nie jest programem zlozonym, to
jednak pozwala na uzywanie przedrostkéw segmentéw w postaci: CS:, DS:, ES:, SS..
Takie przedrostki wpisuje si¢ w osobnej linii przed rozkazem. Mozna tez uzywaé
pewnych skrétéw symboli czy operatoréw, zamiast symbolu RET FAR symbolu
RETF, zamiast operatoréw BYTE PTR i WORD PTR skrétéw BY, WO. Dopuszczal-
ne jest rowniez uzycie pseudorozkazéw DB i DW rezerwujacych miejsce w pamieci,
np. DB 'Napis',0D,0A.

C zakres adres — poréwnaj

Za pomoca polecenia C mozemy poréwnaé zawarto$¢ dwéch obszardw pamieci.
Wielkos§¢ poréwnywanych obszaréw pamiegci operacyjnej wynika z parametru zakres.
Na przykfad polecenie C CS:0100,01AA,0200 poréwnuje bajt po bajcie obszaru roz-
poczynajacego si¢ od adresu CS:0100 do 01AA z obszarem rozciagajacym sie od
0200 do 02AA wzgledem domyslnego rejestru DS. Wszelkie niezgodnodci miedzy
poréwnywanymi obszarami zapisywane sa w postaci:

adres_obszarul bajt_obszarul bajt_obszaru?2 adres_obszaru2

D [zakres] — zrzué

Polecenie D wyprowadza na ekran zawarto$¢ obszaru pamigci w kodach szes-
nastkowych lub jako znaki ASCII; program DEBUG zastepuje kropkami znaki, kté-
rych nie mozna wydrukowac. Jesli nie podano parametru, pamigé¢ bedzie pokazywana
od nastgpnego bajtu za obszarem wy$§wietlonym przez ostatnie polecenie D i obejmuje
128 kolejnych bajtéw. Podczas pierwszego uzycia polecenia zawarto$¢ pamieci bedzie
wySwietlana od adresu DS:0100.

Przyktady:

D C5:020A
D DS:0120

E adres [lista] — wprowadz

Polecenie E modyfikuje zawarto$¢ pamigci operacyjnej. Poleceniem tym mozna
wprowadzi¢ zaréwno taficuch znakéw, jak tez spowodowaé wyswietlenie kolejnych
bajtéw, poczawszy od parametru adres, z oczekiwaniem na zmiane ich zawartosci. Na
przykfad:

-E ES:0000 'Komputer'

Asembler - Podrecznik uzytkownika Strona:34

38 Asembler. Poradnik uzytkownika

Po wydaniu polecenia D (jak ponizej) otrzymujemy po lewej stronie ekranu
szesnastkowy zapis stowa 'Komputer', po prawej stronie ekranu zwykly zapis znako-
wy (i ewentualnie zobaczymy jeszcze inne znaki).

-D ES:0000
10A2:0000 4B 6F 6D 70 75 74 65 72-1D FO 4F 03 27 O0A 8A 03 Komputer

Polecenic E umozliwia tez wprowadzenie pojedynczych liczb szesnastkowych;
wprowadzanie kolejnych znakéw wymaga nacisnigcia klawisza [SPACJA], na przyklad:

-E ES:0000
10A2:0000 4B._

W miejsce wskazywane przez kursor (dolna kreska) wpisujemy liczbg szesnast-
kowa, naciéniecie klawisza [SPACJA] powoduje przejécie do wpisywania nastgpnego
znaku, naciéniecie klawisza [ENTER] — wyjscie z tego polecenia.

F lista zakresu — wypelnij
-F ES:0000 L 20 41

Po wpisaniu polecenia F wprowadzaé¢ bedziemy 32 znaki (szesnastkowo 20)
o wartosci szesnastkowej 41 (kod duzej litery A), poczawszy od adresu ES:0000.

-F ES:0000 ‘Mikrokomputer’

Po tak uzytym.poleceniu F stowo 'Mikrokomputer' wypelni jeden petny blok
pamieci o wielkosci 128 bajtéw.

-G [=adres] [adresy] — idZ do, wykonaj

Polecenie G powoduje rozpoczecie wykonywania testowanego programu od za-
deklarowanego adresu, a nastepnie zatrzymanie jego wykonywania po dojsciu do ad-
resu zadeklarowanego jako tzw. punkt kontrolny (ang. breakpoinr). Na przyklad wy-
wolanie polecenia G w formie: -G 0102 0128 spowoduje wykonanie kodu programu
od adresu poczatkowego 102 w segmencie CS z ustawieniem punktu zatrzymania
(pufapki) na adresie 128. Jcéli zostanie pominiety adres poczatkowy, to program be-
dzie wykonywany od biezacego adresu zawartego w parze rejestrow CS:1P.

H warto$é1 wartos§cé2 — hex

Polecenie H oblicza sume i réznice dwéch liczb szesnastkowych, na przyktad:

-k B 4
000F 0GO07

Liczba O0OF jest suma liczb B (11 dziesietnie) i liczby 4, 0007 jest natomiast
réznica tych liczb.

Asembler - Podrecznik uzytkownika Strona:35

Program uruchomieniowy DEBUG 39

I port — wprowadz
Polecenie I odczytuje i wyswietla szesnastkowa zawarto$¢ podanego portu, na
przyktad:

- 161
2C

Port o numerze 61 (szesnastkowo) zawiera wartos$é 2C.

-1 42
44

Port o numerze 42 zawiera wartosé 44.

L [adres] [dysk] [pierwszy sektor] [liczba] — zataduj

Polecenie L faduje do pamigci operacyjnej plik z dysku o nazwie podanej pole-
ceniem N. Za pomoca polecenia L mozemy tez zatadowac z dysku do pamieci opera-
cyjnej odpowiednig ilo§¢ jego sektoréw. Gdy nie podano adresu, fadowanie nastapi od
adresu 0100h w segmencie kodu CS (dla pliku o rozszerzeniu COM). Plik z rozsze-
rzeniem EXE zatadowany zostanie pod taki- adres, jaki wyznaczaja reguly rzadzace
tego typu plikami.

Przyktad:

-N A:\nc_sk.com

Zadeklarowano plik o nazwie nc_sk.com znajdujacy sie na dysku A.

-L

Po wydaniu polecenia L zawarto$¢ pliku nc_sk.com zostaje zatadowana do pamieci
operacyjnej pod adres CS:IP.

-L 100,0.4.6

Powyzsze uzycie polecenia L zaladuje z dysku A (0=A, 1=B, 2=C itp.) do pa-
migci operacyjnej 6 kolejnych sektor6w logicznych dysku, poczynajac od sektora nr 4
pod adres CS:0100.

M zakres adres — przenies; kopiowanie zadeklarowanego obszaru pamieci pod wska-
zany adres (uwzgledniane jest cwentualne naktadanie sie obszaréw na siebie).

Przyktad:

Wyswietlmy pewien obszar pamigci, ktéry nastepnie bedziemy chcieli kopiowaé w in-
ne miejsce pamigci — obszar docelowy.

-D C5:0100 0120
-D DS:0300 0320

Asembler - Podrecznik uzytkownika Strona:36

40 Asembler. Poradnik uzytkownika

Kopiujemy 33 bajty pamigci spod adresu CS:0100 do obszaru zaczynajacego si¢ adre-
sem DS:0300.

-M €S:0100 0120 DS:0300

Ponownie przejrzyjmy zawartosci obszaréw, CS:0100 do 0120 oraz DS:0300 do 320,
azeby przekonac si¢, ze przekopiowane zostaly 33 bajty pamigci spod adresu CS:0100
(CS:IP).

N [§ciezka] [lista arg] — nazwa; okre§lenie nazwy pliku wraz z ewentualng $ciezka
dostepu. Polecenie N przygotowuje dane zawarte w pliku dyskowym w celu ich zata-
dowania do pamigci operacyjnej lub tez przygotowuje dane zawarte w pamigci opera-
cyjnej do zapisania ich w pliku dyskowym poleceniem W.

Przykfad:

-N A:\nc_sk.com

O port bajt — wyprowadz

Polecenie O wyprowadza bajt do portu, ktérego adres jest stala 8- lub 16-bitowa.
Przyktad:

-0 612D

Do portu o adresie szesnastkowym 61 wprowadzono stata 2D.

Q — zakoncz; koniec pracy z programem DEBUG, przekazanie sterowania do systemu
operacyjnego. "

R [rejestr] — rejestr; wyswietlenie zawartosci jednego lub wigcej rejestréw.
Polecenie R bez argumentéw wysSwietla zawarto$¢ wszystkich rejestréw 1 znacz-
nikéw (flag) procesora.

Przyktady:

-R

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=10A2 ES=10A2 SS=10A2 CS=10A2 IP=0100 NV UP EI PL NZ NA PO NC
10A2:0100 FFFF 277 DI

-RAX

AX 0000
: ;po dwukropku istnieje mozliwoS¢ zmiany zawartosci rejestru
-RCS

CS 10A2
d ;mimo iz po dwukropku istnieje mozliwosc zmiany zawartosci rejestru, to
;W tym rejestrze nie naleZy nic zmieniad, nacisngc tylko kiawisz [Enter]

Asembler - Podrecznik uzytkownika Strona:37

1c
1c
10
10

ce

Program uruchomieniowy DEBUG 41

-RF — wyswietlenie stanu znacznikéw (flag) procesora, z mozliwoscia ich zmiany.
Program oczekuje na podanie nowego stanu wybranych (badZ wszystkich) znaczni-
kéw. Gdy nic nie zmieniamy, naciskamy klawisz [Enter]. (Poczatkujacy programisci
nie powinni praktycznie nic ,,w ciemno” zmieniaé w zadnym z rejestréw).

NV UP EI PL NZ NA PO NC -

Tabela 5.1. Stan znacznikow (flag) procesora

Znacznik (flaga) =1 =0
OF OV (ang. over) NV (ang. not over)
DF DN (ang. down) UP (ang. up)
IF El (ang. enables int) DI (ang. disables int)
SF NG (ang. negative) PL (ang. plus)
VAL ZR (ang. zero) N7 (ang. not zero)
AF AC (ang. aux. cary) NA (ang. not aux. canry)
PF PE (ang. parity even) PO (ang. parity odd)
CF CY (ang. carry yes) NC (ang. no cary)

S zakres lista — szukaj

Polecenie S przeszukuje wedtug podanego wzorca zadeklarowany obszar pa-
migci. Poszukiwanie jest skoriczone, gdy zostal znaleziony wzorzec lub gdy zostat
osiggnigty koniec zakresu zadeklarowanego do poszukiwania. Dla jednobajtowego
wzorca program DEBUG wyswietli wszystkie adresy, przy ktérych wzorzec zostat
znaleziony.

Przykfady:

-§ €3:0100,0400 "tM’ ‘poszukujemy taricucha znakow tM’ od adresu CS:0100
cdo adresu CS:0400

10A2:036C dancuch tM' wystepuje pod adresem 10A2:036C

-$ €5:0100,0500 4d 02 .poszukujemy wystgpienia ciggu bajtow 4d 02 w przedziale
;adresow CS:0100 do CS.:0500

10A2:032D sbajty 4d 02 znalezione zostaly przy adresach

10A2:034D ;bajty 4d 02 znalezione zostaty przy adresach

10A2:0365 ;bajty 4d 02 znalezione zostaly przy adresach

10A2:036D sbajry 4d 02 znalezione zostaly przy adresach

L T [=adres] [warto$¢] — §ledZ; krokowa realizacja programu
Polecenie T bez zadnych parametréw wykonuje pojedynczy rozkaz spod bieza-
L cego adresu, okreslonego stanem rejestrow CS:IP i wyswietla zawarto$¢ wszystkich

Asembler - Podrecznik uzytkownika Strona:38

42 Asembler. Poradnik uzytkownika

rejestréw. Gdy podajemy adres poczatkowy, poprzedzamy go znakiem '='. Domyslna C
liczba krokéw wykonywania rozkazéw wskazywana przez parametr [wartos¢] jest C
liczba 1. W
Przykiady: P
-T ;wykonaj rozkaz spod adresu wskazanego przez aktualny stan rejestrow CS:IP -
-T A ;wykonaj dziesiel rozkazow, poczgwszy od adresu CS:IP c.

-T=CS:013E 5 ;wykonaj piec kolejnych rozkazdéw, zaczynajqc od adresu CS:013E

U [zakres] — dezasembluj; thumaczenie zawarto§ci pamigci operacyjnej na symbolicz-
ne kody rozkazéw i wyswietlenie ich na ekranie. 72

Uwaga!!! Poczatkowy adres musi wskazywaé pierwszy bajt rozkazu, w przeciw-
nym razie wykonane zostanie btedne tumaczenie. Gdy parametrem polecenia U jest

offset, standardowo przyjmowany jest rejestr CS. m

ne
Polecenie U bez parametru wyswietla 32 bajty kodu maszynowego, poczawszy |

od adresu wskazanego przez biezacy stan rejestréw CS:IP (gdy uprzednio wykonano

polecenie R). -W

Przyktady:

-U 10C7:0100 L6 ;deasemblacja szesciu bajtéw od adresu 10C7:0100

10C7:0100 EB74 JMP 01746

10€7:0102 90 NOP

10€7:0103 53 PUSH BX

10C7:0104 Z2E CS: Izé

10€7:0105 4B DEC - BX ZW

-U Jfragment 32-bajtowego ciggu rozkazéw, prawidlowo zdeasemblowanych

10C7:0100 EB74 JMP 0176 XA

10C7:0102 90 NOP

10C7:0103 53 PUSH BX XL

10C7:0104 2E CS:

10C7:0105 4B DEC BX XM

10C7:0106 2E CS: XS

10C7:0107 4C DEC SP

-U 0101 L6 ;fragment nieprawidlowo zdeasemblowanych szesciu bajtéw

10€7:0101 7490 JZ 0093

10€7:0103 53 PUSH BX O p

10C7:0104 2E Cs:

10C7:0105 4B DEC BX BF

10C7:0106 2E Cs:

10€7:0107 4C DEC Sp BP
BR

W [adres] [dysk] [pierwszy sektor] [liczba] - zakres DF

Polecenie W zapisuje do pamieci dyskowej okreslonego obszaru pamigci w for-
macie mapy pamieci (COM lub BIN). Przed uvzyciem polecenia W nalezy okresli¢
nazwe tworzonego pliku (i ew. sciezke) poleceniem N. Gdy w poleceniu W pomini¢to
adres, zostanie przyjety adres poczatkowy CS:0100. Zanim wywolane zostanie pole-

Asembler - Podrecznik uzytkownika Strona:39

Program uruchomieniowy DEBUG 43

cenie W, do zapisu dyskowego nalezy wpisa liczbg bajtéw, odpowiednio w rejestrze
CX (,miodsza” cz¢s$¢) 1 BX (,.starsza” czesé). Program DEBUG nie zapisuje plikow
w formacie EXE.

Przyktady:

-RCX

CX 00DD ;aktualny stan rejestru (licznika) CX

:0D ;ustawiamy wartos¢ CX na 0D

-N A:\stach.com ;okreslamy nazwe i Sciezke dla zapisywanego pliku

-W €5:0100 ‘zapis na dysku w stacji A, 0D bajtow, poczqwszy od adresu
;CS:0100

Lapisywanie 0000D bajtow ‘na dysku utworzy sig plik stach.com

Jezeli bedziemy odwolywaé si¢ do logicznej organizacji dysku, wéwczas polece-
nie W wyslapi z parametrami okreslajacymi odpowiednio: adres w pamieci operacyj-
nej, skad kopiujemy dane, numer stacji dyskéw (0=A,1=B), poczatkowy sektor dysku,
liczbg sektoréw; dla dyskietek sektor logiczny zawiera 512 bajtéw.

-W 0200,0,4,5 ;zapisz na dysk A do jego pieciu kolejnych sektorow
logicznych, poczgwszy od sektora nr 4, dane zawarte
‘W pamieci operacyjnej zaczynajgce si¢ od adresu CS:0200

Uwaga!!! Z poleceniem W eksperymentowac tylko i wylacznie na dyskietce.

Polecenia XA, XD, XM, XS mozna stosowaé, gdy zainstalowano program za-
rzadzania pamigcia stronicowans (zwykle jest to EMM386.EXE). Dla programisty,
zwlaszcza poczatkujacego, polecenia te nie maja wiekszego znaczenia.

XA [#stron] — alokuj pamigé rozszerzong typu expanded,

XD [dojscie] — dezalokuj pamig¢ rozszerzona typu expanded,

| XM [Lstrona] [Pstrona] [dojscie] — mapuj strony pamieci rozszerzonej,

XS - wys$wietl stan pamieci rozszerzone;.

; Program DEBUG posiada bardzo niewielki zaséb komunikatéw informujacych
0 popelnionych biedach:

BF — niewtasciwy symbol stanu flagi,

k BP - zadeklarowano wigcej niz 10 putapek,

_ BR — w poleceniu R uzyto niepoprawnej nazwy rejestru,

' DF — w poleceniu RF podano dwie wartosci dla tej same;j flagi.

Asembler - Podrecznik uzytkownika Strona:40

44 Asembler. Poradnik uzytkownika

5.2. Proste programy pod DEBUG-iem

Jednym z najprostszych programoéw, jakie na samym poczatku uzywania pro-
gramu DEBUG mozna wykonaé, jest wywolanie przerwania obstugujacego drukarke.
W tablicy wektoréw przerwan znajdujemy przerwanie o numerze 5, przerwanie to
powoduje wydruk tego, co wida¢ na ekranie. Wywolajmy polecenie D, moze i R
(chodzi o to, aby na ekranie byt sporo znakéw), a nastgpnie polecenie asemblacji A.

-A

10A2:0100 INT 5H ;po adresie CS:IP (tu: 10A2:0100) wpisujemy rozkaz INT 5SH
10A2:0102 ;i jeszcze raz naciskamy klawisz [Enter]. Rozkaz INT 5SH
-6=0100 0102 szajmuje dwa bajty od 0100 do 0102, wykonajmy ten vozkaz

Wykonanie rozkazu INT 5H spowoduje wydruk na drukarce zawartosci ekranu.

Po wykonaniu poprzedniego programu w postaci dwubajtowego rozkazu INT SH
program DEBUG jest juz gotéw do wykonania nastepnego polecenia. Sprébujmy
jeszcze wykonad taki sam krétki program jak poprzednio, wpisujac teraz numer prze-
rwania 19H; w rozdziale ,,Tablica wektorow przerwan”, czytamy, iz przerwanie 19H
powoduje zafadowanie systemu operacyjnego; innymi stowy, efektem wykonania
dwubajtowego rozkazu INT 19H bedzie restart komputera. W tym miejscu moze ro-
dzi¢ sie pytanie: co kryje si¢ za tymi rozkazami INT 5H, INT 19H, INT 4H itp. Otoz
pod tymi rozkazami INT kryja si¢ rézne procedury, czgsto ,,porozrzucane” po calej
pamigci i do$¢ skomplikowane. Mozna sprobowaé przesledzi¢, krok po kroku, jak
wyglada taka procedura, az do jej efektu koncowego. Z takich obserwacji mozemy
wyciagnaé wiele interesujacych wnioskéw, mozemy tez wzorowac si¢ na zapisanych
w pamigci RAM i ROM procedurach i na ich podstawie napisa¢ wiasne, moze nawet
lepsze. Tak tez mozna robié, zastepujac oryginalne procedury wiasnymi procedurami,
jesli chce si¢ uzyska¢ co§ wigcej lub tez zaprezentowal procedur¢ inaczej niz
,,zasiyto” to w systemie operacyjnym badZ w sprzgcie.

Ponizej dokonujemy asemblacji (oczywiscie poleceniem A) rozkazu INT 4H.
Spéjrzmy na kilka krokéw wykonywania si¢ tego rozkazu.
-A .
10A2:0100 INT 4H
10A2:0102
-R
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 $I=0000 DI=0000

DS=10A2 ES=10A2 S$S=10A2 CS=10A2 IP=0100 NV UP EI PL NZ NA PO NC
10A2:0100 CD0O4 INT 04

Powyzsze wartosci CS i IP sq aktualnymi wartosciami w systemie | bedg one roz-
ne w kazdym innym komputerze, a nawet bedq rozne w tym samym komputerze po
uprzednim uruchomieniu programu.

-7
AX=0000 BX=0000 CX=0000 DX=0000 S$P=FFE8 BP=0000 SI=0000 DI-0000

Asembler - Podrecznik uzytkownika Strona:41

Program uruchomieniowy DEBUG 45

DS=10A2 ES=10AZ2 SS=10A2 CS=0070 IP=0465 NV UP DI PL NZ NA PO NC
0070:0465 CF IRET

Jesli chodzi o powyisze wartosci CS i IP, to koniecznie nalezy zajrze¢ do roz-
dziatu ,, Tablica wektoréw przerwan” .

-T
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=10A2 ES=10A2 S5=10A2 CS=10A2 IP=0102 NV UP EI PL NZ NA PC NC
10A2:0102 0000 ADD [BX+SIJ,AL DS:0000=CD

-T ‘

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0Q000 SI=0000 DI=0000
DS=10A2 ES=10A2 SS=10A2 CS=10A2 IP=0104 NV UP EI NG NZ NA PO NC
10A2:0104 27 DAA ==

-T T

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 S1=0000 DI=0000
DS=10A2 ES=10A2 SS=10A2 CS=10A2 IP=0105 NV UP EI PL ZR NA PE NC
10A2:0105 0300 ADD AX,I[BX+SI1 DS:0000=20CD

Spéjrzmy jeszcze na fragment kodu maszynowego ,,zaszytego” w pamigci (RAM
1 ROM), odpowiedzialnego za wydruk na drukarke. Co wigc musimy zrobi¢? Musimy
dokona¢ asemblacji rozkazu INT 5H, a nast¢priie krok po kroku ogladac kod procedu-
ry powodujace] wydruk.

-A

10A2:0100 INT 5H

10A2:0102

-R

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=10A2 ES=10A2 SS=10A2 CS=10A2 IP=0100 NV UP EI PL NZ NA PO NC
10A2:0100 CDO5 INT 05

Powyzsze wartosci CS i IP sq aktualnymi wartosciami w systemie i, podobnie jak
poprzednio, bedq rozne w kazdym innym komputerze, a nawet bedg rozne w tym sa-
mym komputerze, po uprzednim wruchomieniu programu.

-T
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFE8 BP=0000 SI=0000 DI=0000
DS=10A2 ES=10A2 $S=10A2 CS=F000 IP=FF54 NV UP DI PL NZ NA PO NC
FO00:FF54 60 DB 60

Jesli chodzi o powyisze wartosci CS i IP, to koniecznie nalezy zajrzec¢ do roz-
dziatu ,, Tablica wektoréw przerwan’ .

T
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFD8 BP=0000 SI=0000 DI=0000
DS=10A2 ES=10A2 SS=10A2 CS=F000 IP=FF55 NV UP DI PL NZ NA PO NC
FOO0:FF55 1E PUSH DS

T

A¥=0000 BX=0000 CX=0000 DX=0000 SP=FFD6 BP=0000 SI=0000 DI=0000
0$=10A2 ES=10A2 S=10A2 CS=F000 IP=FF56 NV UP DI PL NZ NA PO NC

Asembler - Podrecznik uzytkownika Strona:42

46 Asembler. Poradnik uzytkownika

FO00:FF56 B84000 MOV AX,0040

-T

AX=0040 BX=0000 CX=0000 DX=0000 SP=FFD6 BP=0000 S$I=0000 DI=0000
DS=10A2 ES=10A2 $S=10A2 C$=F000 IP=FF59 NV UP DI PL NZ NA PO NC
F000:FF59 50 PUSH AX

-T

AX=0040 BX=0000 CX=0000 DX=0000 SP=FFD4 BP=0000 SI=0000 DI=0000
DS=10A2 ES=10A2 $S=10A2 CS=F000 IP=FF5A NV UP DI PL NZ NA PO NC
FOO0:FFSA 1F POP DS

-T

AX=0040 BX=0000 CX=0000 DX=0000 SP=FFD6 BP=0000 SI=0000 DI=0000
DS=0040 ES=10A2 $S=10A2 CS=F000 IP=FFSB NV UP DI PL NZ NA PO NC
FO00:FF5B BOO1 MOV AL,01

-T

AX=0001 BX=0000 CX=0000 DX=0000 SP=FFD6 BP=0000 SI=0000 DI=0000
DS=0040 ES=10A2 $S5=10A2 CS=F000 IP=FF5D NV UP DI PL NZ NA PO NC
FO00:FF5D 86060001 XCHG AL,[0100] DS:0100-00

Sledzac juz chociazby tych kilka krokéw w wykonywaniu procedury wydruku
zawarto$ci ekranu, zorientujemy si¢, gdzie ,,ucickaja” adresy kodéw maszynowych
§ledzonej procedury. Rejestr kodu CS wskazuje adres FOOOH, offset IP na FFSDH.
Takie adresy leza ,,glcboko” w pamigci, 1 to w pamigci ROM.

Sprébujmy przeliczyc:
F000x10H+FF5DH=F0000H+FF5DH=FFF5DH=1048413 dziesi¢tnie.

W 1 MB pamieci miesci si¢ 1048576 bajtéw, czyli procedura drukowania jest
gdzie$ blisko krafica 1 MB obszaru pamigci, obszaru pamigci ROM. W tym tez obsza-
rze ,,zaszyto” cate mndstwo innych procedur umozliwiajagcych w ogdle dziatanie
komputera i obstuge jego peryferii. Czego jeszcze mozna si¢ nauczyc, patrzac na ko-
lejne kroki wykonujacej si¢ procedury drukowania? Wielu interesujacych rzeczy.
Miedzy innymi mozna zobaczy¢ w dziataniu, w akcji, rozkazy MOV, PUSH, POP
itp., przyréwnujac do siebie kolejne stany niektérych rejestréw.

Program DEBUG.EXE, mimo wielu niedogodnosci, pozwala jednak poczatkuja-
cym programistom uzyskac wiele satysfakcji, zwlaszcza gdy efekty ich pracy bedg
namacalne, daja si¢ slyszeé, zobaczy¢, badZ tez gdy — ku naszemu zdziwieniu — na-
stapi zresetowanie komputera. To ostatnie zjawisko nie zawsze bywa korzystne; nauka
jednak kosztuje duzo wyrzeczen i nakfadéw finansowych, koniecznie tez trzeba wy-
rzec sie¢ konsumpcyjnego podejécia do rzeczywistodcl, nalezy by¢ roztropnym 1 spo-
kojnym badaczem, majac w sobie duzo stoickiego spokoju 1 mnisie] wytrwatosct.
Wréémy jednak do Asemblera. Spdjrzmy do rozdziatu ,, Tablicy wektoréw przerwan”,
przerwanie nr 10H — Obstuga ekranu monitora (wektor: 0040-0043). Przerwanie to
oferuje szeroki zakres ustug. Numer ustugi wpisujemy do rejestru AH; rejestr AH
odgrywa w programach asemblerowych kluczowa rolg. WeZmy pod uwage dwie
»proste” ustugi: dla AH=1 1 AH=6. W tym miejscu prosz¢ jednak nie mie¢ zbyt du-

Asembler - Podrecznik uzytkownika Strona:43

Program uruchomieniowy DEBUG 47

zych ztudzen, iz wystarczy przestaé (tu: pod DEBUG.EXE) do rejestru AH wymie-
nione wartosci, wywola¢ przerwanie 10H za pomoca rozkazu INT i po klopocie.
Owszem, niekiedy tak bywa, ze przerwanie nie potrzebuje wigcej uszczegélowiania,
aby wywotac zen jakas ustuge, jednakze w tym przypadku tak nie jest. Przede wszyst-
kim, nie znamy jeszcze jgzyka Asembler, bySmy mogli przesta¢ dang do wyznaczo-
nego rejestru. To prawda, znamy polecenia DEBUG.EXE, ktére na tym etapie two-
rzenia ulotnych programéw wystarcza nam do takiej prostej operacji, jaka jest prze-
stanie danej. Mowimy: — Prostq operacje, jakq jest przestanie danej, a tak naprawde
wiele zfozonych czynnosci logiczno-clektronicznych musi zaj$é, zanim po naszym
wpisaniu polecen ustawig si¢ rejestry procesora w taki stan, o jaki nam chodzi. Mniej-
$Za na razie z tym, niech si¢ o to ,,martwi” program uruchomieniowy, no i moze pro-
Cesor wraz ze swym otoczeniem.

Wroémy do gldwnego watku. Gdy juz uda si¢ nam wpisa¢ (jak?) do rejestru AH
warto$¢ rowna 1, wowczas zaczniemy ksztattowac na ekranie monitora rozmiar kur-
sora wedlug naszych upodoban. To dopiero poczatek. Kursor jest takim sobie matym
prostokacikiem, i aby w pelni go zdefiniowac na ekranie trzeba podaé w rejestrze CH
numer linii w wierszu, od ktdrej zaczyna si¢ jego wysSwietlanie, a w rejestrze CL nu-
mer linii w wierszu, na ktérej kofczy si¢ wyswietlanie. W normalnym trybie kursor,
wedtug standardu IBM, ma postaé jednej, a zwykle dwdch poziomych kresek
~fysowanych” w obszarze prostokata o wysokosci 16 takich kresek. Dlugosci 1 grubo-
§ci tych kresek zmieniaé¢ nie mozemy, mozemy manipulowad tylko ich liczba, mniej
lub bardziej wypetniajac dw prostokat. Zapewne wszyscy programisci domyélili sig, iz
wakcja toczy si¢” w trybie tekstowym. W trybie graficznym komputera (a doktadnie;j
jego karty graficznej) mozemy programowad kursor wszerz i wzdluz, jaki tylko ze-
chcemy, np. zamiast standardowego kursora-prostokata zbudowanego z kresek zapro-
gramujemy go w postaci zegarka, dfoni, rakiety, drzewa itp. W przypadku trybu tek-
stowego, gdy do rejestru CH wstawimy warto$¢ 00, a do CL wartos¢ 01, to powin-
niSmy otrzymac kursor o dwdch kreskach potozonych mozliwie najwyzej, gdy za$ do
rejestru CH wstawimy warto$§é OFH i do CL tez wartoé¢ OFH, wéwczas bgdziemy
mieli kursor o jednej kresce mozliwie najnizej pofozone;j.

Wiemy juz w zasadzie wszystko o tym, jak programowo utworzy¢ taki kursor.
Uruchamiamy program DEBUG.EXE. Po ,,stynnej” debuggowskiej kresce stanowig-
cej znak gotowosci do wprowadzania polecen, wydajmy polecenie R, bez parametru;
chcemy tylko zobaczy¢ stan rejestrow. Na pewno w rejestrach CX, AX, jak i w wielu
innych, mamy stan 0000. Musimy zmienié stany tych rejestrow; do AH wstawimy
warto§¢ 01, do CH 1 CL tg sama wartos$¢ rowng OFH. Ponownie piszemy polecenie R,
ale juz z parametrem, potem CX, a nast¢pnie AX. Po RAX [Enter] i dwukropku wpi-
sujemy 0100 [Enter]; AX=AH+AL. Nast¢pnie po RCX [Enter] i dwukropku wpisu-
jemy OFOF [Enter}; CX=CH+CL. Ta ustuga zmiany kursora pochodzi z procedury
przerwania dotyczacego obstugi ekranu monitora, przerwania 10H. Ten numer prze-

Asembler - Podrecznik uzytkownika Strona:44

48 Asembler. Poradnik uzytkownika

rwania wpisujemy do pamieci, wprowadzajac najpierw polecenie asemblacyjne A,
a nastepnie wpisujac INT 10H [Enter] i jeszcze raz [Enter], gdyz w tym programie nie
bedziemy juz wpisywaé zadnych rozkazéw. Mozemy wpisac raz jeszcze polecenie R
bez parametru, aby przekonaé si¢ o stanie rejestréw 1 wprowadzonym rozkazie INT
10H. Wykonajmy ten rozkaz INT 10H z wprowadzonymi warto$ciami do AX 1 do
CX. Rozkaz miesci si¢ na dwoch bajtach od offsetu 0100H do 0102H. Po znaku za-
chety wpisujemy polecenie G=0100 0102. Dwubajtowy program zostal wykonany,
zostawiajac na ekranie nowy, cieniutki i inaczej pofozony niz poprzednio kursor.

Mozemy skonstruowaé jeszcze bardziej efektowny program, uzywajac funkcji
6H lub 7H. Uzyjmy funkcji 6H przerwania obstugi ekranu monitora. Program obstugi
kryjacy sie za ta funkcja stuzy do definiowania prostokatnego pola — okna tekstowego
na ekranie i do przesuwania jego zawartosci w gére (funkcja 7H powoduje przesuwa-
nie w déf). Funkcje 6H (czy 7H) kierujemy do rejestru AH. Z ta funkcja zwigzanych
jest wiele parametréw. Do rejestru AL wpisujemy liczbe wierszy, ktére majag by¢ wy-
gaszone na dole zdefiniowanego okna, do CH numer wiersza gémego lewego rogu
okna, do CL numer kolumny gérnego lewego rogu okna, do DH numer kolumny dol-
nego prawego rogu okna, do DL numer kolumny dolnego prawego rogu okna, do BH
atrybut wyswietlania pustych linii. Wywolajmy program DEBUG.EXE, a potem pole-
cenie R, do AH wstawimy wartos$¢ funkcji 06H, do AL warto$¢ 03 (3 linie okna), do
CX wartoéé 050A (CH=05H, CL=0AH; gérny lewy rég wiersz nr 5, kolumna nr 10),
do DX warto$¢ 1020H (DH=10H, DL=20H; dolny prawy rog wiersz nr 16, kolumna
nr 32). Aby efekt wykonania programu by! bardziej dostrzegalny, zapiszmy ekran
jakimi§ znakami, np. wydajac polecenie D 0000 L 180. Wreszcie na koniec wpiszmy
za pomocq polecenia A numer przerwania 10H i wykonajmy program G=0100 0102.
Jesli Czytelnik zgubit si¢ po drodze, prosze przeprowadzic nastgpujacy cigg polecen.
Po znaku gotowosci programu DEBUG.EXE napiszmy RAX [Enter], po dwukropku
wpisujemy 0603 [Enter], znowu polecenie R, lecz teraz z nazwa rejestru CX. RCX
[Enter], dwukropek 0S0A [Enter], i jeszcze raz R z parametrem oznaczajacym rejestr
DX. RDX [Enter], dwukropek 1020 [Enter]. Po poleceniu asemblacji A wpisujemy
INT 10H [Enter][Enter]. Zapetniamy ekran dowolnymi znakami, piszac: D 0000 L 180.
Wykonujemy program G=0100 0102. Efekt znakomity, ,,wyciety” zostat fragment
ekranu zapisanege przypadkowymi znakami. Na ekranie mamy czarny, pusty prosto-
kacik o wspétrzednych, jakie podalismy we wlasciwych dla funkcji 06H rejestrach.

5.3. Zalety, wady, mozliwosci programu DEBUG

Program DEBUG jest prostym programem uruchomieniowym, umozliwiajacym
uruchamianie matych programéw, ogladanie stanu rejestrow, zawartosci wybranego
bloku pamieci, proste przesylanie czy szukanie bajtéw w pamieci, no i wreszcie pisa-
nie prostych programéw, ich uruchamianie, z mozliwoscia zapisywania kodu wyko-
nywalnego do pliku dyskowego. Faktycznie, istnieje w programiec DEBUG taka moz-

Asembler - Podrecznik uzytkownika Strona:45

Program uruchomieniowy DEBUG 49

liwosc, ktora pozwala zapisywac kod programu, zanim go uruchomimy. Jednakze tu
jest pewne, bardzo wazne zastrzezenie..., ale po kolei,

W programie DEBUG istnieje polecenie N, dzieki ktéremu mozna okreslié na-
zwe pliku wraz z petng Sciezka dostepu (tego polecenia najlepiej uzywacé tuz po wej-
sciu do programu). Zatézmy, ze dokonujemy asmeblacji wektora przerwania nr 5H,
powodujacego wydruk ekranu na drukarce, i chcemy zapisaé wynik tej asemblacji na
dysku w postaci pliku dyskowego formatu COM (zapisywaé mozemy tylko w forma-
cie COM, natomiast wezytywaé réwniez i w formacie EXE). Wydajemy polecenie A,
wpisujemy INT 5H [Enter], [Enter]. Po adresach widad, iz rozkaz INT SH zajmuje
dwa bajty. Zatadujmy te dwa zasemblowane bajty rozkazu INT 5H do uprzednio na-
zwanego pliku dyskowego, wpisujac wielko$é tworzonego pliku dyskowego do reje-
stru CX. Wydajemy wiec polecenie RCX, po dwukropku piszemy 0002 i [Enter],
i polecenic W, zapisywania na dysku. Podsumujmy wszystkie wydane polecenia:

-N A:\drukuj.com

-A

10A2:0100 INT 5H

10A2:0102

-R

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=10A2 ES=10A2 SS=10A2 CS=10A2 IP=0100 NV UP EI PL NZ NA PO NC
10A2:0100 CDG5 INT 05

-RCX

X 0000

10A2:0100 INT 5H

10A2:0102

AX=0000 BX=0000 CX=0002 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
05=10A2 ES=10A2 SS=10A2 CS=10A2 IP=0100 NY UP £I PL NZ NA PO NC
10A2:0100 CDO5 INT 05

-W

Lapisywanie 00002 bajtéw

Na dysku A w katalogu gtéwnym utworzy si¢ plik, ktéremu nadaliSmy nazwe
drukuj.com o wielkosci dwéch bajtéw, bo dwa bajty ma rozkaz INT 10H i tyle tez
musieliSmy wpisa¢ do rejestru CX; pamigtamy, ze tylko przez rejestr CX mozemy
wpisa¢ rozmiar pliku do zapisu, gdy plik jest maty, badZ dodatkowo przez rejestr BX
dla duzych plikéw. Tu, i jedynie w nielicznych przypadkach, zdarza sie, ze rejestr CX
| nie jest wykorzystywany podczas programowania. Praktycznie zawsze, w kazdym
programie asemblerowym rejestr CX jest uzywany (zwykle jako licznik). W progra-
mach, w ktérych kod Zrédtowy zapisujemy jawnie, stosujac reguty, petna skladnic
i mozliwosci jezyka Asembler, mozemy si¢ jeszcze od biedy obyé bez rejestru CX,
mamy bowiem stos, mozemy zadeklarowaé jedno- czy dwubajtowa komérke pamieci,
nazywajac jg np. 'licznik’, 'kolumna', czy jeszcze inaczej, i do tej komérki przestaé
dang, do ktdrej potem w programie mozemy si¢ zawsze odwotaé; rejestr CX bedziemy
mieli wolny 1 mozemy go wykorzysta¢ do jeszcze bardziej ,,zboznych” celéw niz
- przechowalnia na 'licznik' czy na warto$¢ oznaczajacy liczbe kolumn tekstowych na

Asembler - Podrecznik uzytkownika Strona:46

50 Asembler. Poradnik uzytkownika

ekranie. Niestety, 2 moze i na szczescie, nie mamy takich mozliwosci manewrowania
komérkami pamigci, rejestrami, stosami itp. w programie DEBUG.EXE. Tu musimy
si¢ zadowolié tym, co mamy. Zreszta, to narzgdzie stuzy do tych tylko celow, a inne,
bardziej rozbudowane, do bardziej ztozonych zastosowail.

Asembler - Podrecznik uzytkownika Strona:47

6

.1i¢
kon
na
spe:
nie

czy
nie
zap
pisz
niez
Tu

6. Podstawy konstruowania

programow w jezyku Asembler

W poprzednich rozdziatach az nadto stato sie oczywiste, ze my, programisci, po-

trzebujemy czego$ wigcej, niz tylko obserwowania niejasnych skutkéw programéw,
programéw wydobywajacych sie gdzie$ z ,,glebin” pamigci i nieuchwytnych na dysk.
W kodzie plikéw COM, a jeszcze gorzej w plikach EXE, nie da sie nic zrobié, by
recznie co$ zmieniaé, a przede wszystkim to przeciez jesteSmy powaznymi ludZmi,
bysmy bawili si¢ w asemblerowa zgaduj-zgadule, edytujac plik wykonywalny
1 ewentualnie na chybit trafit usuwajac cos z pliku czy tcz do niego dopisujac, jakies
wznaczki”, np. O = -, tworzac w ten sposéb nowy program. Te ,znaczki” w pliku to
»echo” kodow szesnastkowych, kodéw, ktére odzwierciedlaja rozkazy procesora.
Chcac uzy¢ w programie COM przerwania 10H, nie bedziemy przeciez wpisywac
| jego odpowiednich kodéw ASCII =>, (ylko musimy stworzyé surowiec do ,,produ-
b kcji” takich réznych ,znaczkéw”. Z takich ,,znaczkéw”, kodéw ASCII zbudowane sg
| programy typu COM lub EXE. Tworzenie owego surowca to nic innego, jak umiejet-
| no$¢ pisania programéw, zapisywanie ich asemblerowego kodu do pliku tekstowego
| czytelnymi dla programisty znakami i z uzyciem pelnej semiotyki jezyka Asembler.
W tym cclu, aby napisa¢ program w jezyku Asembler, trzeba przej$é troche specy-
ficznej, niemalze spartafiskiej i bardzo konseckwentnej szkoly myslenia. Nie wystarczy
| najomosé notacji, semantyki i syntaktyki jezyka. Trzeba zapoznad si¢ z rozkazami
| 1z ich dziataniem.
O ile w jezykach wysokiego poziomu mozemy jeszcze sobie pozwolié na pewna
|, niedbatosc” w programowaniu, o tyle w jezyku Asembler wymagana jest zelazna
_l konsekwencja w dziataniu. W jezykach wysokiego poziomu mozemy sobie pozwoli¢
| na troche luzu, gdyz wiele delikatnych zagadnien zafatwia za nas sam 6w Jjezyk, jego
- specyficzna budowa. Jest to i dobrze, i Zle. Dobrze, bo mamy mniej pracy, a Zle, bo
| nic pozwala to nam by¢ samodzielnym i catkowicie panowaé nad komputerem.

_ Jednak, jak to w zyciu bywa, jest zawsze cos za cos. W jezyku Asembler wystar-
§ czy niekiedy mafa nicuwaga, a caty program wysadzi komputer w powietrze, moze
R nic dostownie, cho¢ — jak juz wiemy — tak sie zdarzalo w przesztosci z rakietami 7le
. zaprogramowanymi (,,surowym” kodem zerojedynkowym). Niestety, to prawda, ale
B piszac w Asemblerze programy tak troche na oslep, przepisujac skads kody o blize]
- nieznanym znaczeniu, mozna powaznie uszkodzié¢ sprzet, jesli nawet nie zniszcezye.
| ; Tu trzeba uwaza¢. Obecnie, kiedy w BIOS s funkcje powodujace generowanie

Asembler - Podrecznik uzytkownika Strona:48

52

Asembler. Poradnik uzytkownika

punktu graficznego, tzw. piksela, na ekranie, nie ma specjalnej groZzby spalenia moni-
tora, ale gdy karta graficzna byla obca komputerowi i nie mial on w swoim BIOS
funkcji bezposrednio oprogramowujacej ekran graficzny, wéwczas nietrudno bylo
zrobi¢ z monitora bardzo silng latarke. Kazde graficzne oprogramowanie monitora
sprowadza si¢ do dziatania na rejestrach karty graficznej, na przekfadaniu zerami
1 jedynkami. A taki rodzaj programowania jest dosy¢ delikatny i zawsze niesie ze sobg
ryzyko.

Na razie powr6¢my do bezpiecznej 1 nieco naukowej tematyki z dziedziny jezyka
Asembler. W czasie wykonywania programu asemblerowego procesor nieustannie
wykonuje wiele ztozonych czynnosci sktadajacych sie na organizacyjnie zamkniety
cykl. Niezaleznie od najnowszych rozwigzan konstrukcyjnych procesoréw, cykl ten
sprowadza si¢ do dwodch najistotniejszych faz — fazy pobrania kodu operacji i fazy
wykonania operacji. Dotychczas w tej ksigzce jawnie nie wystepowato pojecie kodu
operacji, aczkolwiek intuicyjnie na pewno juz wiemy o co chodzi. Dla dobra sprawy
1 precyzji my$li zatrzymajmy si¢ chwile nad tym pojeciem. Najogdlniej, w kodzie roz-
kazu daje si¢ wyrozni¢ dwa pola — pole kodu operacji i pole adresu argumentu
(operandu) lub argumentu (operandu).

Przedrostki . .

rozkazu Opcode ModR/M siB Przesuniecie | Bezposrednie
" do caterech) Jeden lub dwa héjty T jeden bajt 0 jeden bajt | adres 1" dane T
przedrostkow opcode (jesii wymagany) {jesii wymagany) przesunigcia bezposrednie
1-bajtowych kakdy 1, 2 lub 4 bajty 1, 2 lub 4 bajty
{opcjonainia) lub brak lub brak

7654321 0/
R

r“d 0p§g{16

Opcode - kod operacyjny definlujacy operacje wykonywang przez rozkaz

ModR/M - tryb adresowania rejestru/pamieci

SIB - skalowany indeks bazy

Przesunigcie - adres przesunigcia (przemieszczenia)
Bezposrednie - dane bezposrednie

\76543210

Scale

RM Index | Base

Mod - dwa bity okreslajace czy oba argumenty s3 rejestrami, czy tez jeden z nich jest w pamieci operacyjnej
Rey/Opcode - trzy bity okrestajace rejestr jako argument rozkazu lub bedace rozszerzeniem kodu operagji
R/M - trzy bity wskazujace rejestr bedacy argumentem lub rejestr wykorzystywany do obliczenia adresu wzgledem poczatku segmentu

Scale - dwa bity okreslajace wspdtczynnik skali
Index - trzy bity okreslajace numer rejestru z rejestru indeksowego
Base - dwa bity okreslajgce numer rejestru z rejestru bazowego

Rysunek 6.1. Format rozkazu
Pole kodu operacji, zajmujace jeden lub dwa bajty, zawiera kod operacji definiu-

jacy operacj¢ wykonywana przez rozkaz. Natomiast pole adresu argumentu (operan-
du) lub argumentu okresla miejsce tegoz argumentu. WezZmy pod lupe szesnastkowy,

Asembler - Podrecznik uzytkownika Strona:49

Podstawy konstruowania programéw w jezyku Asembler 53

lub lepiej zerojedynkowy, kod operacji zwiazany z jednym z najczesciej wystepuja-
cych w programach asemblerowych rozkazow — z rozkazem przesfania, a precyzyj-
niej, z rozkazem kopiowania. Jesli skopiujemy aktualng zawarto$¢ rejestru akumulato-
ra, jego czesci ,,dolnej” AL do rejestru licznika tez do czesci ,,dolnej” CL, wéwczas
kod tego dzialania ma postaé: 8ACS8, natomiast dla kopiowania z rejestru BL do AL
kod ma postaé: 8AC3. W zapisie szesnastkowym wida¢ juz podobiefistwo miedzy
tymi dziataniami, natomiast cata prawdg o tych operacjach pokaze nam ich kod dwdj-
kowy, kod binarny. Dla 8AC8=10001010 11001000 (w grupach 8-bitowych dla 8A
1 C8) 1 odpowiednio dla 8AC3=10001010 11000011, W celu lepszego zobrazowania
koddéw rozkazow umiesémy je jeden pod drugim:

10001010 11001000
10001010 11000011

8AC8B=kopiuj AL do CL {(MOV CL,AL)
BAC3=kopiuj BL do AL (MOV AL,BL)

W przestaniu zawartodci rejestru do rejestru pierwszy bajt jest interpretowany:
1000101w (w=0 lub 1, zalezy, czy dziatanie oparte jest na bajtach, czy na sIowhch; tu
w obydwu przypadkach: w=0), drugi bajt: 11rejrej (rej=rejestr, trzy bity okreslajace
rodzaj rejestru; przy w=0, rejestr AL kodowany jest jako 000, rejestr BL jako Q11,
rejestr CL — 001). Umieszczone w pamigci kody operacji i liczby (argumenty) sa nie-
rozroznialne, a wigc skad procesor wie, ktéra z tych liczb jest rozkazem, a ktora dana?
Sposéb potraktowania przez procesor danego ciagu bitéw uzalezniony jest od fazy
pracy procesora. Jesli ciag odczytany jest w fazie pobrania, wéwczas umieszczony
zostaje on w rejestrze rozkazow (wskaznik rozkazéw) i bedzie potraktowany jako kod
rozkazu; jesli ciag odczytany zostanie w fazie wykonania, umieszczony zostanie'w in-
nych rejestrach procesora i bedzie potraktowany jako liczba (argument lub adres).

Podstawy konstruowania programéw $cisle zwigzane s ze sposobem rozmiesz-"
czenia. argumentow (operandéw) w pamigci. Dla wigkszosci rozkazéw ich argumenty
(operandy) umieszczone sg w pamigci. Adres komorki pamieci, gdzie umieszczony
jest kod wykonywanego rozkazu, jest zawarty w liczniku rozkazéw (wskazniku roz-
kazéw) IP, natomiast adres argumentu moze by¢ okreslony w bardzo rézny sposob,
zalezny od zastosowanego w rozkazie trybu adresowania. Tryb adresowania okresla
miejsce, gdzie jest umieszczony adres argumentu (operandu), lub sposéb, w jaki jest
on obliczany. I w tym kontekscie taka uwaga: mimo iz programy napisane w jezyku
Asembler wykonywane sa najszybciej ze wszystkich programéw napisanych w do-
wolnym innym jezyku, to jednak podczas pisania programu w Asemblerze tez nalezy
zwraca¢ uwage na sposéb prawidiowego adresowania, aby w programie nie bylo
zbednych elementow wydtuzajacych jego wykonywanie badzZ tez fragmentéw niepo-
trzebnie obciazajacych pamigc itp.

Samo konstruowanie programu Zrédtowego nalezy zaczaé od postawienia sobie
pytania: jakie zadanie ma spetni¢ program, po czym powinno si¢ naszkicowaé siec
dzialania programu, zwlaszcza jesli bedg w nim warunkowe i liczne rozgafezienia.
W tym miejscu oczywidcie zaktadam, iz zasiadajacy przed komputerem poczatkujacy

Asembler - Podrecznik uzytkownika Strona:50

54 Asembler. Poradnik uzytkownika

programista zna podstawowe elementy jezyka oraz Srodowiska, w ktérym jezyk funk-
cjonuje. Edytor, ktéry stuzy nam do wpisywania tresci programu Zrédfowego, powi-
nien byé edytorem czystym, tzn. nie powinien dodawa¢ do zapisywanego na dysku
pliku Zadnych kodéw kofica linii, zmiany linii, zmiany strony itp. Edytor ma tylko
umozliwié nam, programistom, wpisanie kodu Zrédtowego programu. Kod Zrédlowy
programu zawiera rozkazy jezyka i instrukcje asemblera (translatora). Po napisaniu
programu Zrédtowego, poddajemy go asemblacji. Gdy asembler znajdzie btedy w pro-
gramie, wéwczas musimy je niezwlocznie usuna¢ z programu, korzystajac z edytora,
i ponownie dokonujemy asemblacji programu; nowoczesne asemblery maja wbudo-
wana obszerng liste ewentualnych btedéw asemblacji.

Chociaz w otrzymanym po asemblacji programie wynikowym wszelkie symbole
zostaly juz zastapione odpowiednimi warto$ciami zwigzanymi z ulokowaniem w pa-
mieci, 1 dla rozkazéw zostaly wygenerowane juz odpowiednie rozkazy kodéw maszy-
nowych, to mimo to program taki nie nadaje si¢ jeszcze do uruchomiena. Po asem-
blacji standardowo generowany jest plik OBJ; moga by¢ generowane jeszcze inne
pliki dyskowe — LST i CRF. Pierwszy z nich zawiera listing programu — raport asem-
blacji, a drugi plik — informacje dla listy odwofan. Plik ten moze by¢ jeszcze dalej
przeksztalcony na plik dyskowy gotowy do wydruku REF. Interesujacy nas plik wy-
nikowy OBJ przeksztatcamy za pomoca odpowiedniego narzedzia programistycznego,
konsolidatora, na program maszynowy gotowy juz do wykonania. Konsolidator, lin-
ker, pozwala utworzy¢ program maszynowy gotowy do wykonania z wielu nieza-
leznie ttumaczonych modutéw OBJ oraz procedur zawartych w plikach bibliotecznych
majacych rozszerzenic LIB. W zaleznosci od tego, jakich narzedzi uzywamy do
asemblacji i konsolidacji (linkowania), mozliwe jest opcjonalne uzyskanie programu
formatu EXE lub COM (COM - jeéli w ogdle pozwala na to konstrukcja programu).
Program taczacy, konsolidator, moze réwniez dodatkowo utworzy¢ plik z rozszerze-
niem MAP, zawierajacy list¢ polaczeil oraz informujacy o uporzadkowaniu segmen-
téw w programie.

Powréémy znowu do programu Zrédtowego i spéjrzmy do jego wngtrza. Program
7rédtowy zawiera instrukcje asemblera albo dyrektywy asemblera, kiére w procesie
asemblacji ttumaczone sg na rozkazy maszynowe. Dyrektywy sterujgq asemblerem, tzn.
podpowiadaja” mu, co on ma robi¢ z instrukcjami i z danymi. Dane te moga miec
postaé¢ dwéjkowa (binarna), cigg zerojedynkowy zakoriczony jest literkg B; postac
dziesietna — ciag cyfr zakoficzony literka D, i wreszcie postac szesnastkowy — clag
cyfr zakoniczony literka H. Liczby ujemne w postaci dziesigtnej wprowadza sig, po-
przedzajac je znakiem minus. Liczbe ujemna, kodowana dwdjkowo lub szesnastkowo
wprowadza w postaci tzw. uzupetnienia do dwdch. Podczas wprowadzania ciggdw
znakéw i napiséw nalezy je ujmowac w cudzystéw badZ w apostroty.

Gdy z czasem bedziemy pisac bardzo diugie programy, pamigtajmy o komenta-
rzach, bardzo tatwo bowiem straci¢ koncepcje podczas pisania kodu Zrédiowego pro-

Asembler - Podrecznik uzytkownika Strona:51

Podstawy konstruowania programéw w jezyku Asembler 55

gramu posiadajacego kilka, a moze nawet kilkanascie tysi¢cy wierszy, a takie progra-
my pisze si¢ czgsto przez wiele dni, a nawet tygodni.

Pamig¢tajmy! Bardzo dlugie programy pozostawione bez komentarza to czysta
strata czasu, to praca na marne. Nie mamy wigkszych szans, wracajac po kilku dniach
do ntedokoriczonego ztozonego programu, aby$my wiedzieli, co dalej z tym progra-
mem mamy robi¢. Czesto lepiej jest zasiags¢ od nowa do pracy niz szuka¢ — w starym,
nie skomentowanym programie — porzuconych idei. Wiemy juz, ze do tworzenia pro-
gramu Zrédtowego potrzebne sa instrukcje i dyrektywy, ktérych znaczenie trzeba do-
skonale rozumie¢. Zr¢cznie tez musimy poruszaé si¢ w Srodowisku, w ktérym
wZanurzany” jest Zrédtowy program asemblerowy. W tym $rodowisku kazda instrukcja
programowa ma swoje wlasne pole.

Tabela 6.1. Podzial instrukcji asemblerowej na pola

Pole etykiety Pole operacji Pole operandow Pole komentarza
Start: MOV CX, Ziiczaj ;kopiuj bajt do CX
Powtarzaj: DEC CX szmniejszaj CX o 1

STD
Zliczaj: DW 35

Obowigzkowe jest tylko pole operacji. Pole operandéw (argumentéw) wystapi
wowczas, gdy bedzie tego wymagac rozkaz, np. rozkaz STD nie posiada tego pola.
Pole etykiety nie musi by¢ w kazdej linii programu. Pole komentarza powinno wysta-
pi¢ zawsze, i to tylko dla naszego dobra, a nie dla dobra asemblera. Niekiedy w pro-
gramie moze si¢ zdarzy€, ze zapis instrukcji asemblerowej w jednej linii bedzie zbyt
dlugi i przez to nieczytelny. W takim przypadku — bez zadnego uszczerbku dla pro-
gramu — zapis programu mozemy kontynuowad, przenoszac wiersz do nastepnej linii,
nie zapominajac o umieszczeniu na kofcu poprzedniego wiersza znaku kontynuacji
w postaci ukosnika (\). Ponizej zaprezentowano przykfad w dwéch réwnowaznych dla
asemblera postaciach.

Skok: MOV AX,\
BX

Skok: MOV AX,BX

Poprzednio duzo bylo na temat komentarza, jednak nie wszystko. Otéz, jesli
chcemy obja¢ nim duza liczbe linii programu naraz, koniecznie musimy zastosowad
w programie Zréodtowym dyrektywe COMMENT (zapisywana dowolnej wielkosci
literkami) ze znakiem umieszczonym za nig, i to co najmniej w odleglosci jednej spa-
cji, oraz z tym samym znakiem zamykajacym wybrany blok linii, tak jak to przedsta-
wiono na ponizszym przyktadzie:

- Asembler - Podrecznik uzytkownika Strona:52

56 Asembler. Poradnik uzytkownika

Licznik DB ?

X DW 44 DUP(35)

ORG 100H

Start:

COMMENT # ;0d tej linii programu asembler pomija wszystkie...
MOV AH,4

ADD AX,CX

i ;... linie programu, dopdki znowu nie ,,zobaczy” znaku #
END Start

Po tym elementarnym wstepie o znaczeniach pdl wystgpujacych w instrukcji
programu przejdZzmy do ich bardziej szczegélowego opisu, chociaz nadal pozostanie-
my w kregu ogdlnych rozwazan, blizej ducha tej ksigzki.

6.1. Pole etykiety

Etykieta w programie asemblerowym (jesli juz w ogdle wystapi) moze byé za-
koficzona dwukropkiem (np. Start:) lub bez dwukropka (np. Licznik). Etykieta bez
dwukropka oznacza konkretny obiekt. Na przykiad etykieta o nazwie Licznik DB ?
umozliwia zarezerwowanie jednej komdrki w pamieci operacyjnej wielkosci jednego
bajta 1 o nie okreslonej poczatkowej wartosci, etykieta X DW 44 DUP (14, 35) po-
zwala zarezerwowac 44 stowa (podwojnych bajtow) o wartosciach poczatkowych 14
1 35. Trzeba tez wiedzie¢, ze do etykiet bez dwukropka mozna odwotywaé sie z do-
wolnego miejsca w programie. Inny sens ma etykieta z dwukropkiem. Okre$la ona
pewne przesuniccie adresowe w biezacym segmencie. Na przyklad etykieta Start:
wystapl w programie pod offsetem (przesunigciem) 102H, poniewaz wystgpuje tuz po
(pseudorozkazie) ORG 100H, wyznaczajacym poczatkowg warto$¢ przesunigcia
w programie. Do etykiet z dwukropkiem mozna odwotywacd si¢ tylko z wewnatrz bie-
Zacego segmentu.

Z jakich znakéw mogg by¢ budowane etykiety? Do budowy etykiet mamy sporo
znak6éw 1 moga by¢ one bardzo diugie. Muszg sie jednak skfadac¢ z okreslonego bu-
dulca, a mianowicie z liter od A do Z (asembler nie rozrdznia wielkosci liter), cyfr od
0 do 9, znakéw specjalnych, np.: ? . @ _ $.

Etykieta nie moze zaczynac si¢ od cyfry, chyba ze poprzedzimy ja znakiem
kropki. Nazwami etykiet nie moga by¢ symbole oznaczajace nazwy rejestréw. Nie
wolno tez umieszczaé znaku spacji wewnatrz etykiety. W sytuacjach gdy w nazwach
etykiet koniecznie musimy stawia¢ widoczne przerwy, to asembler dat nam taka moz-
liwo$¢, a mianowicie zamiast niedozwolonej spacji mozemy zastosowac znak podkre-
Slenia (_), ktdry réowniez pozwoli nam uzyskac dobry efekt rozdzielenia wyrazéw.

Asembler - Podrecznik uzytkownika Strona:53

Podstawy konstruowania programéw w jezyku Asembler 57

Niezaleznie o tego, ile i jakie znaki moga by¢ uzyte w nazwie etykiety, zaleca si¢ two-
rzenie etykiet o nazwach krétkich i tatwych do identyfikacji.

6.2. Pole operacji (pole mnemonika)

Pole operacji zawiera skr6t mnemoniczny nazwy rozkazu od dwéch do kilku
bajtow. Na przyktad najczesciej stosowany rozkaz MOV jest skrotem mnemonicznym
od angielskiego stowa move (przenies, przesli}). Mnemonik wskazuje asemblerowi
ilos¢ i typ operandéw (argumentéw) potrzebnych do pobrania z pola operandow
(argumentéw). W rozkazie SUB (odcjmowanie) rozkaz musi wyraznie wskazywac,
ktére wyrazenia trzeba od sicbie odeyjmowad.

6.3. Pole argumentow (operandow)

Pole argumentéw (operanddw) informuje procesor o miejscu przetwarzania da-
nych. Jesli pole to wystepuje w rozkazie, to moze zawiera¢ jeden, dwa, a nawet trzy
(dla najnowszych procesoréw) argumenty, oddzielone od mnemonika przynajmniej
jedna spacja lub znakiem tabulacji; poszczegdlne argumenty oddzielane sg od siebie
przecinkiem. W przypadku rozkazu dwuargumentowego pierwszy argument (tzn. ten
blizej umiejscowiony w stosunku do mnemonika) nazywany jest argumentem prze-
znaczenia, a drugi argumentem Zrodtowym. Na przyktad w rozkazie MOV CL, AL
rejestr AL jest argumentem Zrodtowym, a rejestr CL argumentem przeznaczenia, do-
celowym. Zawartos¢ argumentu Zrédtowego nigdy nie ulega zmianie, natomiast ar-
gument przeznaczenia prawie zawsze podlega modytikacji.

6.4. Pole komentarza

Pole komentarza zostato juz do$é wyczerpujaco omdéwione, mozna jedynie przy-
pomnieé, iz kazde umiessczenie znaku Srednika w linii instrukcji zostanie zignoro-
wane przez ascmbler podezas asemblacji programu Zrédiowego. Asembler umieszcza
jednak komentarz w tzw. listingach. wydrukach powstatych po asemblacji.

W tym miejscu moglibysmy zadaé sobie proste pytanie, czy majac tyle réznej
wiedzy mozemy juz skonstruowad program asemblerowy, zapisujac go nastepnie
w pliku dyskowym o rozszerzeniu ASM. Oczywiscie moglibySmy sprébowac pokusic
sie o konstruowanie programu. Jednakze dopdty, dopdki nie poznamy szczegotow
poprawnego konstruowania programowania, programowanie w jezyku Asembler po-
zbawione bedzie sensu i swoistego smaku. Asemblerowe programowanie to nie tylko
notacja, rozkazy, dyrektywy, pseudodyrektywy, operatory 1 inne cegietki, to réwnicz
sposoby siegania po dane do rozkazéw, czyli adresowanie, a tego jeszcze nie przera-
bialiSmy. Najprostszym sposobem (trybem) adresowania jest adresowanie poprzez
rejestr. Wiemy juz, ze w rozkazie — w polu trybu adresowania — zawarta jest (tez) in-

Asembler - Podrecznik uzytkownika Strona:54

58 Asembler. Poradnik uzytkownika

formacja o miejscu danej potrzebnej do danego rozkazu. Procesor na podstawie tej
informacji okresla, ktéry tryb adresowania ma by¢ uzyty. Rozpoznanie przez asembler
trybu adresowania nastgpuje na podstawie programu Zrodlowego. Jezeli argumentami
rozkazu bedg dwa rejestry, wowczas asembler zakoduje obydwa argumenty w trybie
adresowania (adresacji) rejestru, np. MOV AX, BX. Taki rodzaj adresowania nazywa
si¢ adresowaniem poprzez rejestr lub adresacja rejestrowa.

AX| 0000000100010111 *o/é"v 0000000000100011 |AX
BX|0000000000100011 0000000000100011 |BX
CX|0000000000010000 0000000000010000|CcX

DX|0000000000000000 0000000000000000 | px

Rejestry przed Rejestry po
wykonaniem wykonaniu
rozkazu rozkazu

MOV AX, BX

Rysunek 6.2. Tryb adresowania poprzez rejestr

AX| 0000000100010111 0000000000100011|AX
BX 0000000000100011 0000000000100011 |BX

¢Xx/0000000000010000 0000000001011101|cX
DX|0000000000000000 0000000000000G00 | pX

Rejestry przed Rejestry po
wykonaniem wykonaniu
rozkazu rozkazu

MOV CL,93
=MOV CL, 5DH
=0101110110110001B

93 (dziesietnie)

Rysunek 6.3. Tryb adresowania natychmiastowego

Ten tryb adresowania jest najszybszym i najprostszym sposobem wskazywania
argumentéw (operanddw), podobnie jak tryb adresowania natychmiastowego,
w ktérym stafa 8-, 16- czy 32-bitowa jako argument Zrédlowy zawarta jest w rozkazie
(umieszczona tam przez asembler), a nie w rejestrze czy w komoérce pamigci, np.
MOV CL,-35 MOV CX, 44 czy MOV EAX,123456. Argumentem natychmiasto-

Asembler - Podrecznik uzytkownika Strona:55

X g9 »m N o

Podstawy konstruowania programéw w jezyku Asembler 59

wym moze by¢ tez symbol zdefiniowany przez dyrektywe EQU, tak jak to przedsta-
wiono na ponizszym przyktadzie:

LICZBA1 EQU 16

MOV CX,LICZBA1

W asemblerze mamy nieustannie do czynienia z réznego typu liczbami. Zapisu-
jac je w instrukcjach programowych musimy zawsze pamictaé, jak one sa duze, czy
zmieszczg si¢ do zadeklarowanej komorki lub rejestru, ktéry jest zawsze tak samo
szeroki.

Trzeba wiedzie¢, iz liczby 8-bitowe ze znakiem mieszcza sie w zakresie od
+127(7FH) do -(minus) 128(80H), najwigksza 8-bitowa liczba bez znaku wynosi 255
(OFFH); liczby 16-bitowe ze znakiem mieszczq sie w zakresie od +32767 (7FFFH) do
-(minus) 32768 (8000H), najwicksza 16-bitowa liczba bez znaku wynosi 65535
(OFFFFH); 32-bitowe liczby ze znakiem mieszcza sic w zakresie od + 2147483647
(TFFFFFFFH) do — (minus) 2147483648 (80000000H), najwicksza 32-bitowa liczba
bez znaku wynosi 4294967295 (OFFFFFFFFH).

Podczas kopiowania liczby do argumentu przeznaczenia, np. podczas dzialania roz-
kazu MOV AX,1000, asembler traktuje liczbe 1000 jako tysiac (w systemie dziesietnym).
W przedstawieniu dwdjkowym liczba tysiac mie¢ bedzie postaé: 1111101000. Gdy ta
liczba fadowana bedzie do 16-bitowego rejestru przeznaczenia (AX), asembler dopisuje do
niej z przodu szes¢ zer, rozszerzajac ja do 16-bitowego rejestru. Analogicznie dzieje si¢ dla
przypadkéw z 8- i 32-bitowym rejestrem, gdy wpisywana do nich.liczba dodatnia lub
ujemna jest o wiele mniejsza niz rozmiar rejestru.

Po tej dluzszej, a jakze waznej dygresji o rodzajach liczb powréémy do trybéw
adresowania. W programach asemblerowych nie tylko stosujemy dwa proste tryby

§ oadresowania, poprzez rejestr i natychmiastowe, w ktérych to trybach sieganie po dane
§ lub ich adresy odbywa sie bez udziatu rejestréw segmentowych lub rejestru stosu;

' ', byloby to zbyt proste, by bylo prawdziwe.

4 Tak jak w trybie adresowania natychmiastowego, w ktérym dana zawarta jest
. w rozkazie, tak tez podobnie jest z trybem adresowania bezposredniego, z ta jednak-
§ ieréznica, Ze teraz w rozkazie zawarty jest adres efektywny, a nie dane ,.hatychmia-
; stowe”; adres efektywny wyznacza potozenie argumentu od poczatku segmentu. Ar-
§ gumentem adresowania bezposredniego jest gléwnie etykieta, np.:

§ vov ax, TaBLICAL

Asembler - Podrecznik uzytkownika Strona:56

60 Asembler. Poradnik uzytkownika

MOV AX, TABLICA1 Seament
0000 |
. Y001 [8B TABLICA1
1A8B 0002 1A
0004 TABLICA1+2

Rysunek 6.4. Tryb adresowania bezposredniego

Do rejestru AX tadowana jest zawarto$¢ komérki pamigci z dana o nazwie Tablical.

MOV AX, [BX]

Segment

0001 BX danych
0000

< 0001 8B TABLICA1

1A8B |AX 0002 1A
0004 TABLICA1+2

Rysunek 6.5. Tryb adresowania posredniego poprzez rejestr

W trybie adresowania posredniego poprzez rejestr adres efektywny argumentu
znajduje sie w rejestrze bazowym BX lub we wskazZniku bazy BP (wskaznik bazy BP
odnosi sie do rejestru SS) albo w rejestrze indeksowym SI lub DI Rejestry, ktdre sg
argumentaml posrednimi, zapisujemy w programie obejmujac je nawiasem kwadrato-
wym, by méc odréznié je od rejestréw-argumentow. Na przyktad MOV AX, BX to
zupelnie co innego anizeli MOV AX,[BX]. W pierwszym przypadku do rejestru AX
tadowana jest zawarto$é rejestru BX, w drugim przypadku tadowana jest zawartos
komérki, ktérej adres (wzgledem poczatku segmentu — tzw. offsetu) wskazuje rejestr
BX. Aby umiescié¢ offset w rejestrze BX, uzywa si¢ przed adresem pamigci przedrost-
ka OFFSET, na przykiad:

MOV BX,OFFSET TABLICAl
MOY AX,[BX]

Dwie powyzsze instrukcje asemblera wykonuja t¢ samg czynnos¢ co instrukcja
MOV AX, TABLICAL, z ta réznica, ze o ile bezposrednie przyporzadkowanie nazwy
komérce pamieci jest jednoznaczne i wlasciwe przy operowaniu na pojedynczej ko-
" morce, o tyle operowanie na wielu komérkach z nieustannym odwotywaniem si¢ do
nowego adresu komérki w adresowaniu bezposrednim bytoby uciazliwe. Stad te:

Asembler - Podrecznik uzytkownika Strona:57

Podstawy konstruowania programéw w jezyku Asembler 61

adresowanie posrednie stwarza mozliwo$¢é elastycznych dziatah na adresach komorek,
bez pobierania za kazdym razem nowego adresu kolejnej komorki.

Jest jeszcze inny tryb adresowania — adresowanie posrednie poprzez rejestr ba-
zowy. W tym trybie adresowania asembler oblicza adres efektywny przez dodanie
zawartos$ci offsetu (przesuniecia) do zawartosci rejestru BX lub BP.

Segment

danych

MOV AX, [BX] +4 0019
001A X1

/\ o018
001A BX 001C
001D

. 001E| _ [8B

1A8B AX 001F (1A
0020

Rysunek 6.6. Tryb adresowania poSredniego poprzez rejestr bazowy

Taki tryb adresowania jest bardzo wygodny w przypadku uzyskiwania dostgpow
do struktur danych umieszczonych w réznych miejscach pamigci.” Adres bazowy
struktury umieszczamy w rejestrze bazowym, natomiast do poszczegdlnych elemen- -
tow struktury odwotujemy si¢ podajac offset (przesunigcie) od adresu bazowego.

W trybie adresowania indeksowanego bezposrednio adres efektywny jest suma
dwéch sktadnikéw — przesuniecia (offsetu) i rejestru indeksowego DI lub SI. Taki
rodzaj indeksowania jest bardzo wygodny do operowania na tablicach. Przesuni¢cie
wskazuje poczatek tablicy, natomiast rejestr indeksowy jej element. Na ponizszym
rysunku w tablicy stéw elementy sa odlegte od siebie o dwa bajty. Dla tablicy T1 in-
strukcje:

MOV DI, 4
MOV AX,T1IDI]

zataduja trzeci element tablicy T1 do rejestru AX.

Na zakoficzenie omawiania trybéw adrcsowania zasygnalizujmy jeszcze jeden
tryb, a mianowicie adresowanie indeksowane bezposrednie poprzez rejestr bazo-
wy. W tym trybie adresowania adres efektywny jest suma rejestru bazowego, rejestru
indeksowego oraz (ewentualnie) przesuniecia. Ze wzgledu na stosowane w tym trybie \
adresowania dwa odrebne przesuniecia nadaje si¢ on do operowania na tablicach
dwuwymiarowych. W rejestrze bazowym przechowywany bedzie adres poczatkowy
tablicy, natomiast przesuniecie i rejestr indeksowy dotyczy¢ bgda wiersza 1 kolumny.

~

Asembler - Podrecznik uzytkownika Strona:58

62 Asembler. Poradnik uzytkownika

Segment
danych
MOV AX, T1[Df]
T— [o001

/

0004 | DI
. 0005 8B
1A8B AX 0006 1A

Rysunek 6.7. Tryb adresowania indeksowego bezposredniego

T

T1+2

T1+4

Nasza wiedza na temat podstaw programowania w jezyku Asembler jest juz pra-
wie petna. Wystarczy jeszcze poznad przynajmniej kilka dyrektyw potrzebnych do
wytworzenia kodu maszynowego i mozemy napisa¢ prosty program asemblerowy.
Gotowy juz Zrédtowy program asemblerowy o rozszerzeniu ASM poddajemy — za
pomoca odpowiednich narzgdzi — asemblacji, a nastepnie konsolidacji wedlug sche-

matu pokazanego na ponizszym rysunku.

».
Ll

A 4

Asemblerowy plik zrédiowy
EKRAN.ASM

h 4

ASEMBLACJA

Plik obiektowy
EKRAN.OBJ

KONSOLIDACJA
(LINKOWANIE)

Plik w postacl wykonywalne;j
EKRAN.EXE (lub.COM)

jr;s’lf zZmiany beda konieczne

Rysunek 6.8. Schemat tworzenia nowego programu

URUCHAMIANIE

Programéw do asemblacji i konsolidacji jest wiele. Najczesciej spotykanymi sa:
MASM i LINK oraz TASM i TLINK; dwéch réznych firm. Pisanie programéw pod

Asembler - Podrecznik uzytkownika Strona:59

Podstawy konstruowania programéw w jezyku Asembler 63

asembler MASM praktycznie rézni si¢ (szczegélami) od pisania programéw dla
TASM. Autor niniejszej ksiazki uzywac bedzie programu TASM, kierujac sie osobi-
stym przyzwyczajeniem do tego narzedzia,

Sprobujmy skonstruowaé pierwszy program asemblerowy, tym samym wpra-
wiajac calg maching asemblerowa w ruch. Zanim jednak to zrobimy, krétko opisane
zostang niektére dyrektywy, konieczne do stworzenia programu.

* SEGMENT - dyrektywy SEGMENT i ENDS dzielg program Zrédfowy na seg-
menty. Program moze mie¢ cztery rodzaje segmentdw: danych, kodu, stosu i do-
datkowy. Dyrektywa SEGMENT moze posiada¢ trzy argumenty: typ segmentu,
polaczenie, klase. Typ segmentu okresla poczatek adresu rozpoczynajacego seg-
ment przechowywany w pamieci. Potaczenie okresla sposéb taczenia segmentu
z innymi segmentami o tej samej nazwie. Klasa segmentu ma wplyw na kolej-
nos¢ przechowywania segmentéw.

* ENDS —jw.

* END - dyrektywa sterujaca asemblerem, wyznaczajaca asemblerowi koniec
asemblacji programu Zrédtowego. Wszystko to, co wystapi za dyrektywa END,
bedzie pomijane podczas asemblacji.

* ASSUME - dyrektywy SEGMENT i ENDS zaznaczaja poczatek i koniec seg-
mentu programu, jednak nie wskazuja asemblerowi, jaki rodzaj segmentu jest de-
finiowany. To wskazanie umozliwia dopiero dyrektywa ASSUME. Dyrektywa
ma posta¢ ogdlng: ASSUME rejestr segmentowy:nazwa segmentu lub ASSUME
rejestr segmentowy:NOTHING. Na przyklad ASSUME DS: Dane oznacza, iz
segmentem danych jest segment o nazwie Dane, a rejestr DS bedzie zawierat po-
czatek segmentu Dane.

* ORG - dyrektywa sterujaca asemblerem. Ustawia wskaznik asemblera na war-
to$¢ wystepujaca po dyrektywie ORG, powodujac przechowywanie przez asem-
bler danych i instrukcji od miejsca wskazanego dyrektywa ORG. Dyrektywa
ORG 100H uzywana jest w konstrukcji programéw typu COM, wskazujac asem-

- blerowi, aby przechowywanie programu nastapito 0100H, czyli 256 bajtéw za

biezaca pozycja.

| MALUJ SEGMENT

L ASSUME CS:MALUJ

MOV AX,0000H ;(1) przesytamy wartos¢ 0000H do rejestru AX...

MOV DS, AX :(2)... gdyz bezposrednio do DS nie mozna tego zrobic¢
MOV AX,O0BBOOH :(3) przesytamy wartos¢ 0B80OH posrednio do...

MOV ES,AX (4)... rejestru AX, a docelowo do ES

| MOV SI,0000H :(5) adres offsetu pamigci, skqd kopiujemy

- MOV DI, 1*160D :(6) adres offsetu pamigci, dokqd kopiujeny

L MOV CX,3%80D (7) 240 znakéw (wlqcznie z ich atrybutami)

- CLD (8) kopiowanie ,w przod”

Asembler - Podrecznik uzytkownika Strona:60

64 Asembler. Poradnik uzytkownika

REP MOVSW (9) powtarzaj rozkaz MOVSW, az CX=0)
MOV AH, 4CH ;(10) funkcja wyjscia z programu...

INT 21H J(11)...do DOS

MALUJ ENDS

END

Nadajmy nazwe plikowi, w ktérym znajduje si¢ powyzej napisany program —
ekran.asm.
Dokonujemy asemblacji pliku ekran.asm przy uzyciu programu TASM.EXE:

TASM ekranl.asm] ;w nawiasach [| — domysinie
Turbo Assembler Version xxx Copyright xxx
. Assembling file: ekran.ASM ;nazwa asemblowanego pliku
Error messages: None ;brak bfedow asemblacji
Warning messages: None sbrak ostrzezen -
Passes: 1 ;jedno przejscie asemblera
Remaining memory: 434k ;pozostato pamieci operacyjnej (tu: 434KB)

Po asemblac]i otrzymamy na dysku phk obicktowy exran.ob).
Plik ekran.obj poddajemy konsolidacji za pomocg programu TLINK.EXE:

TLINK ekranl.objl ;w nawiasach [] — domysinie
Turbo Link Version xxx Copyright xxx
Warning: No stack costrzezenie: brak stosu

Na dysku utworzy! si¢ gotowy plik do wykonania — ekran.exe.

Komentarz dotyczacy znaczenia (ponumerowanych) linii pliku ekran.asm. Pro-
gram ekran.asm kopiuje obszar pamigci zaadresowany za pomoca rejestrow DS:SI
(0000H:0000H) — obszar Zrédiowy, do obszaru pamieci zaadresowanego przez parg
rejestréw ES:DT (O0B80OH:00A0H) — obszar docelowy. Kopiowania tego dokonujemy
przy uzyciu rozkazu MOVSW. Obszar docelowy tak zostal dobrany, aby widaé bylo
wyraznie efekty dziatania programu. Po prostu obszar docelowy jest czgscia pamigcl
karty VGA (B800-BFFF) i na ekranie zaczynac si¢ bedzie od drugiej linii (od gdry
ekranu — linia programu nr (6)), a koficzy¢ na linii piatej (linie programu nr (6)+(7)).
Powodzenia!

Asembler - Podrecznik uzytkownika Strona:61

7. Tablica wektorow przerwan

Tablica wektoréw przerwan zajmuje obszar pierwszego kilobajta pamigci opera-
cyjnej; 256 wektoréw x 4 bajty dla jednego wektora. Adresy programéw obstugi prze-
rwafl s3 wpisywane do tablicy wektoréw przerwan przy tadowaniu systemu operacyj-
nego przez BIOS i przez system operacyjny. Przerwania obstugiwane przez BIOS
maja numery od 0 do 1FH, chociaz system operacyjny moze przechwytywac niektore
z tych przerwan. Zasadniczo pozostale przerwania obstugiwane sa przez system ope-
racyjny, cze$¢ z nich jest jednak przeznaczona na potrzeby uzytkownika. W celu pre-
zentacji tablicy wektoréw przerwan zawartej w pamigci skorzystajmy ze znanego nam
programu DEBUG.

-D 0000:0000

G000:0000 9E OF CB 00 65 04 70 00-16 00 CF D8 65 04 70 00e.p..... e.p.
0000:0010 65 04 70 00 54 FF 0Q FQ-58 85 00 FO 6F EF 00 FO e.p.T...X...0...
0000:0020 00 00 B2 09 D2 08 1A DC-6F EF 00 FO 6F EF 00 FO 0...0...
0000:0030 6F EF 00 FO 6F EF 00 FO-%9A 00 CF D8 65 04 70 00 0...0....... e.p.
0000:0040 13 00 EZ Q9 4D F8 00 FO-41 F8 00 FO F7 24 62 FDM...A....$b.
0000:0050 39 E7 00 FO 3A 05 98 02-2D 04 70 00 28 0A 83 DO 9...:...-.p.(...
0000:0060 A4 E7 OO FO 2F 00 D9 03-6E FE OO FO 04 06 83 DO/...n.......
0000:0070 1D GO B2 09 A4 FO 00 F0O-22 05 00 00 10 65 00 CO R - D

Ten fragment pamigci pokazuje pierwsze 32 wektory w zapisie szesnastkowym
wraz z umieszczonymi obok znakami w kodzie ASCII; kody znakéw niedrukowal-
nych zastgpowane sa kropkami.

, W przedstawionym fragmencie pamigci przykiadowo wyrdézniono adres czwar-
§ tego i piatego wektora przerwania: INT 4H, wartos¢ CS=0070, IP=0465 oraz INT 5H
b CS=F000, IP=FF54. Czcionka opisujaca adres przerwania piatego zostala dodatkowo
3§ rpodkreslona (w pamieci widaé zapis zgodny z przechowywaniem odwrotnym).

| Tabela 7.1. Tablica przerwan

Nr przerwania Nr przerwania Adres wektora* Znaczenie
— dziesietnie — szesnastkowo — szesnastkowo
0 0 0000-0003 Dzielenie przez zero
1 1 6004-0007 Praca krokowa
2 2 0008-000B Przerw. niemaskowalne
3 3 (000C-000F Putapka (gener. przez INT3)
4 4 0010-0013 Nadmiar

" Asembler - Podrecznik uzytkownika Strona:62

66 Asembler. Poradnik uzytkownika

Nr przerwania Nr przerwania Adres wektora* Znaczenie
— dziesietnie — szesnastkowo — szesnastkowo

5 5 0014-0017 Wydruk ekranu monitora
6 6 0018-001B Zarezerwowane
7 7 001C-001F Zarezerwowane
8 8 0020-0023 Przerw. zegara; IRO0
9 9 0024-0027 Przerw. klawiatury; IRQI
10 A 0028-002B Zarezerwowane; IRQ2
11 B 002C-002F Przerw. sterow.(2).; IRQ3
12 C 0030-0033 Przerw. facza szereg.; IRQ4
13 D 0034-0037 Sterow. dysk. tward.; IRQ3
14 E 0038-003B Sterow. dysk. miek.; IRQ6
15 F 003C-003F Sterow, drukark.; IRQ7
16 10 0040-0043 Obstuga ekranu monitora
17 11 0044-0047 Konfiguracja systemu
18 12 0048-004B W AX wielk. pam; (40:13)
19 13 004C-004F Obstuga dyskietki/dysku
20 14 0050-0053 Obst. transmisji szeregowe;j
21 15 0054-0057 Rozmiar pamigci rozszerz.
22 16 0058-005B Obstuga klawiatury
23 17 005C-005F Obstuga drukarki
24 18 0060-0063 Basic
25 19 0064-0067 tadowanie systemu operac.
26 1A 0068-006B Obstuga zegara system.
27 1B 006C-006F Obst. klaw. CTRL-BREAK
28 1C 0070-0073 Obst. przerw. zegarowego
29 iD 0074-0077 Param. sterow. ekranu
30 1E 0078-007B Param. napedu dyskietek
31 IF 007C-007F Tabl. znak. graf. (128-255)
32 20 0080-0083 Zakonczenie programu
33 21 0084-0087 Wywolanie funkcji DOS
34 22 0088-008B Adres powrot. po zak. progr.
35 23 008C-008F Obsi. przerw. wykon. progr.
36 24 0090-0093 Obst. btedéw krytycznych
37 25 0094-0097 Odczyt sektoréw z dysku

Asembler - Podrecznik uzytkownika

Strona:63

Tablica wektoréw przerwan

67

Nr przerwania Nr przerwania Adres wektora* Znaczenie

— dziesi¢tnie — szesnastkowo — szesnastkowo

38 26 0098-0098 Zapis sektoréw na dysku

39 27 009C-009F Zak. i pozost. progr. w pam.
40 28 00A0-00A3 DOS w stanie jatowym
41 29 00A4-00A7 Szybkie wyst. zn. na konsol.
42 2A 00A8-00AB DOS w stanie jatowym
43-45 2B-2D 00A4-00B4 Zarezer. dla DOS
46 2E (00B8-00BB Wyk. polecenia systemowe
47 2F 00BC-00BF Przerw. multipleksowe
48 30 00C0-00C3 We. do fun. sys. DOS
49 31 00C4-00C7 We. do fun. sys. DOS/DPMI
50-63 32-3F 00C8-00FF Zarezer. dla system. operac.
64 40 0100-0103 Obst. dyskie. (gdy jest dysk)
65 41 0104-0107 Param. dysku. twardego 1
66 42 0108-010B Ob. ka. CGA(gdy jest EGA)
67 43 010C-010F Znaki graf. kart EGA/VGA
68 44 0110-0113 Znaki graf. karty EGA
69 45 0114-0117 Zarezer. dla BIOS
70 46 0118-011B Param. dysku twardego 2
71-73 47-49 011C-0127 Zarezer. dla BIOS
74 4A 0128-012B Alarm (AT)
75-95 4B-5F 012C-017F Zarezer. dla BIOS
96-103 60-67 0180-019F Zarezer. dla prog. uzytk,
104-111 68-6F 01A0-01BF Nie uzywane

112 70 01C0-01C3 Zarezer.;IRQ8

113 71 01C4-01C7 Zarezer.;IRQ9

114 72 01C8-01CB Zarezer;JIRQ10

115 73 01CC-01CF Zarezer.;IRQ11

116 74 01D0-01D3 Zarezer.;JRQ12

117 75 01D4-01D7 Przerw. koprocesora;IRQ13
118 76 01D8-01DB Sterow. dysk. tward.;IRQ14
119 77 01DC-01DF Zarezer.;IRQ15

120-127 78-7F 01E0-OIFF Nie uzywane

128-133 80-85 0200-0217 Zarezer. dla Basica

. Asembler - Podrecznik uzytkownika

Strona:64

68 Asembler. Poradnik uzytkownika

Nr przerwania Nr przerwania Adres wektora* Znaczenie
— dziesi¢tnie — szesnastkowo — szesnastkowo
134-240 86-F0 0218-03C3 Uzywane przez Basic
241-255 F1-FF 03C4-03FF Nie uzywane

Skroty i oznaczenia:

Adres powrot. po zak. progr. — Adres powrotny po zakoficzeniu programu
gener. — generowane

Fadowanie systemu operac. — Ladowanie systemu operacyjnego

Obst. — Obstuga

Param. — Parametry

Przerw. — Przerwanie

Sterow. — Sterownik{a)

Zarezer. — Zarezerwowane

Ob. ka. CGA — Obstuga karty graficznej CGA

Obst. dyskie. — Obstuga dyskietki

Obst. przerw. wykon. progr. — Obstuga przerwania wykonywanego programu
Przerw. tacza szereg. — Przerwanie tycza szeregowego

Przerw. sterow. (2) — Przerwanie sterownika (2)

Sterow. drukark. — Sterownik drukarki

Sterow. dysk. migk. — Sterownik dysku migkkego

Sterow. dysk. tward. — Sterownik dysku twardego

Szybkie wysl. zn. na konsol. — Szybkie wystanie znaku na konsolg

Tabl. znak. graf. — Tablica znakéw graficznych

W AX wielk. pam. — W rejestrze AX wielko§¢ pamigci

We. do fun. sys. — Wejscie do funkcji systemowe;] |

Wyk. polecenia systemowe — Wykonano polecenie systemowe

Zak. i pozost. progr. w pam. — Zakofczenie i pozostawienie programu w pamigcl
Zarezer. dla prog. uzytk. — Zarezerwowane dla programéw uzytkowych
Zarezer. dla system. operac. — Zarezerwowane dla systemu operacyjnego

Znaki graf. — Znaki graficzne

* Adres wektora przerwania (jege poczatek) obliczamy wedtug nastgpujagcego wzoru: nr prze-
rwania X 4; kazdy wektor w tablicy wektoréw przerwan zajmuje 4 bajty adres kofica wektora
przerwania = adres poczatku+3; wektory liczone s3 od zera, np.: 4AX4=128H, 128+3=12BH
(szesnastkowo) lub dziesi¢tnie 74x4=296(128H}), 296+3=299=12BH.

Asembler - Podrecznik uzytkownika Strona:65

8. Dwa przerwania najczesciej
uzywane w programach

asemblerowych

Najczesciej uzywanymi przerwaniami w programach asemblerowych sa:
e przerwanie 10H (16D) — obstuga ekranu monitora,
* przerwanie 21H (33D) — wywotanie funkcji DOS.

Ze wzgledu na to, iz niektére funkcje dotyczace zaréwno przerwania 10H, jak tez
21H sa zbyt trudne w uzyciu, zwlaszcza dla poczatkujacego programisty, w rozdziale
tym opisane zostang tylko te funkcje, ktére sg stosunkowo fatwe w uzyciu i cz¢sto
stosowane w programach.

INT 10H

Funkcje przerwania 10H realizowane sa wpisaniem zawartosci do rejestru AH:
AH=0 - ustawienie trybu pracy karty graficzne;j

AH=1 — zdefiniowanie rozmiaru kursora

Wejscie:

CH - numer linii w wierszu, w ktdrej zaczyna si¢ kursor
CL — numer linii w wierszu, na ktérej koniczy si¢ kursor

AH=2 — ustawienie pozycji kursora na ekranie
Wejscie:
BH — numer strony

DH — numer wiersza
DL — numer kolumny

AH=3 — odczytanie polozenia kursora na ekranie
Wejscie:

BH — numer strony

Wyjscie:

Asembler - Podrecznik uzytkownika Strona:66

70 Asembler. Poradnik uzytkownika

DH — numer wiersza
DL — numer kolumny
CH 1 CL — aktualnie ustawiony typ kursora (jak dla funkeji 1H)

AH=5 — zmiana strony aktywnej]
Wejscie:
AL — numer strony aktywne]

AH=6 - przewijanie strony aktywnej w gore

AH=7 — przewijanie strony aktywnej w dét

Wejscie:

AL — liczba wierszy, ktére maja by¢ wygaszone na dole okna
CH — numer wiersza gérnego lewego rogu okna

CL — numer kolumny gdérnego lewego rogu okna

DH — numer wiersza dolnego prawego rogu okna

DL — numer kolumny dolnego prawego rogu okna

BH — atrybut (wygaszonych) wierszy

AH=8 — odczytanie znaku i atrybutu w miejscu ustawienia kursora
Wejscie:

BH — numer strony

Wyjscie:

AL —kod znaku

AH - atrybut znaku

AH=9 - zapisanie znaku i atrybutu w miejscu ustawienia kursora

Wejscie:

AL —kod znaku

AH — atrybut znaku

CX - liczba znakéw do zapisu

AH=10 (0AH) - zapisanie znaku bez atrybutu w miejscu ustawienia kursora
Wejscie:

AL — kod znaku

CX — liczba znakéw do zapisu

AH=11 (0BH) — wybér palety koloréow
Wejscie:

BH — numer palety

BL — numer koloru z wybranej palety koloréw

Asembler - Podrecznik uzytkownika Strona:67

Dwa przerwania najczgsciej uzywane w programach asemblerowych

71

AH=12 (0CH) - wys$wietlenie punktu
Wejdcie:

BH — numer strony

DX — numer wiersza

CX — numer kolumny
AL — kolor punktu

AH=13 (0DH) - odczytanie punktu
Wejscie:

BH — numer strony

DX — numer wiersza

CX — numer kolumny

Wyjdcie:

AL — kolor punktu (podanego miejsca)

AH=15 (0FH) — odczytanie stanu ekranu
Wejscie:

AL — tryb pracy

AH - liczba kolumn

BH — numer aktywnej strony

INT 21H

Funkcje przerwania 21H realizowane sg wpisaniem zawartosci do rejestru AH:

AH=01H - odczytanie znaku z klawiatury i wystanie echa na ekran

Wyjscie:
AL — odebrany znak

AH=02H — wystanie znaku na ekran
Wejscte:

DL —kod znaku do wystania
AH=05H - wydrukowanie znaku
Wejscie:

DL — znak do wydrukowania

AH=07H — odczytanie znaku z konsoli
Wyjscie:
AL — znak odebrany z klawiatury

AH=08H — odczytanie znaku z klawiatury

Asembler - Podrecznik uzytkownika Strona:68

72 Asembler. Poradnik uzytkownika

Wyjscie:

AL — znak odebrany z klawiatury; brak echa, wykrywany jest CTRL-BREAK
AH=09H — wyswietlanie na ekranie taficucha znakow (tekstu)

Wejscie:

DS:DX — adres poczgtku tancucha, fancuch koficzy si¢ znakiem $

AH=0BH - sprawdzenie, czy w buforze jest podany znak z klawiatury
Wyjscie:

AL — FFH — znak gotowy do odebrania

AL — O0OH — brak znaku

AH=0EH — wybor stacji dyskéw

Wejscie:

DL — numer stacji dysku (A =0, B =1 itd.)
Wyjscie:

AL — liczba dyskéw logicznych w systemie
AH=19H — dysk roboczy

Wyjscie:

AL — numer dysku roboczego (A=0,B =1 itd.)
AH=1AH — deklaracja bufora transmisji dyskowych
Wejscie:

DS:DX — wskaznik do obszaru deklarowanego bufora
AH=25H - zapisanie wektora przerwan

Wejscie:

AL — numer przerwania

DS:DX — adres nowej procedury obstugi przerwania

AH=2FH — informacja o pofozeniu bufora transmisji dyskowych
Wyjscie:

ES:BX — wskaznik do biezacego bufora transmisji dyskowych
AH=31 — zakoficzenie procesu z pozostawieniem w pamigci
Wejscie:

AL - kod powrotu

DX — rozmiar programu pozostawionego w pamigci (w paragrafach)

Uwaga! Zamiast przerwania INT 21H — funkcja 31H, bywa jeszcze stosowane
starsze przerwanie 27H(39D), ktdre réwniez umozliwia zakoficzenie wykonywanego

Asembler - Podrecznik uzytkownika Strona:69

Dwa przerwania najczedciej uzywane w programach asemblerowych 73

programu z pozostawieniem go w pamieci. Rejestry CS:DX powinny zawieraé adres
nastepnego bajtu po ostatnim bajcie kodu programu.

AH=35H - odczytanie wektora przerwan
Wejscie:

AL — numer przerwania

ES:BX — adres procedury obstugi przerwania

AH=39H - utworzenie podkatalogu

Wejscie:

DS:DX — wskazZnik do specyfikacji katalogu (ciag ASCII+0)
Wyjscie:

znacznik CF = 0 — poprawne wykonanie

znacznik CF = 1 — bfad; kody btedéw w AX

AH=3AH - usunigcie podkatalogu

Wejscie:

DS:DX — wskaznik do specyfikacji katalogu (ciag ASCII+0)
Wyjscie:

znacznik CF = 0 — poprawne wykonanie

znacznik CF = 1 — btad; kody bledéw w AX

AH=3BH — zmiana katalogu roboczego

Wejscie:

DS:DX — wskaznik do specyfikacji nowego katalogu roboczego (ciag ASCII+0)
WyjScie:

znacznik CF = 0 — poprawne wykonanie

znacznik CF = 1 — biad; kody btedéw w AX

AH=3CH - utworzenie pliku
Wejscie:
§ CX - atrybuty pliku
§ DS:DX - wskaznik do specyfikacji pliku (cigg ASCII+0)
Wyijscie:
macznik CF = 0 — poprawne wykonanie, w AX uchwyt pliku
macznik CF =1 —blad; kody bledéw w AX
Uchwyt pliku — liczba 16-bitowa przekazywana przez funkcje systemu podczas
tworzenia pliku ub podezas otwarcia istiejaceso juz pliku. W systemie okreflono
pie¢ uchwytéw pliku (od 0 do 4):

0000H - standardowe wejscie,

0001H — standardowe wyjscie,

Asembler - Podrecznik uzytkownika Strona:70

74 Asembler. Poradnik uzytkownika

0002H — standardowe urzadzenie do wysylania komunikatéw o blgdach,
0003H — standardowe 13cze szeregowe,
0004H — standardowa drukarka,

AH=3DH - otwarcie pliku

Wejscie:

AL — tryb otwarcia pliku

DS:DX — wskaznik do specyfikacji pliku (ciag ASCIIH0)
Wyjscie:

znacznik CF = 0 — poprawne wykonanie, w AX uchwyt pliku
znacznik CF = 1 — blad; kody bledéw w AX

AH=3EH - zamknigcie pliku

Wejscie:

BX — uchwyt pliku

Wyjscie:

znacznik CF = 0 — poprawne wykonanie
znacznik CF = 1 — blad; kody bledéw w AX

AH=3FH - odczytanie z pliku

Wejscie:

BX — uchwyt pliku

CX - liczba bajtéw do odczytania

DS:DX — wskaZnik do bufora (miejsca odczytania danych)

"~ Wyjscie:

znacznik CF = 0 — poprawne wykonanie; AX — liczba odczytanych bajtéw
znacznik CF = 1 - bfad; kody bedéw w AX

AH=40H - zapis do pliku

Wejscie:

BX — uchwyt pliku

CX - liczba bajtéw do odczytania

DS:DX — wskaZnik do bufora (miejsca pobierania zapisywanych danych)
Wyjscie:

znacznik CF = 0 — poprawne wykonanie; AX — liczba zapisanych bajtow
znacznik CF = 1 — bfad; kody btedéw w AX

AH=41H — skasowanie pliku

Wejscie:

DS:DX — wskaZnik do specyfikacji do kasowanego pliku (ciag ASCII+0)
Wyjscie:

Asembler - Podrecznik uzytkownika Strona:71

Dwa przerwania najcz¢Sciej uzywane w programach asemblerowych 75

znacznik CF = 0 — poprawne wykonanie
znacznik CF = 1 — blad; kody bledéw w AX

AH=42H — przesuni¢cie wskaZnika odczytu-zapisu pliku
Wejscie:
AL —rodzaj przesunigcia (0 — wzgledem poczatku pliku, 1 — wzgledem biezacej pozy-
cji, 2 — wzgledem kofica pliku)

Uwaga! Dla AL = 1 lub 2 warto$¢ podawana w CX:DX jest traktowana jako
liczba catkowita ze znakiem (kod U2).
BX — uchwyt pliku
CX:DX — wielkos¢ przesunigcia (liczba 4-bajtowa, w CX — cz¢$¢ najbardziej znacza-
ca)
Wyjscie:
znacznik CF = 0 — poprawne wykonanie; DX:AX — nowa pozycja wskaznika odczytu-
zapisu wzgledem poczatku pliku (liczba 4-bajtowa, w DX cze$¢ najbardziej znaczaca)
znacznik CF = 1 — blad; kody bledow w AX

AH=4CH - zakoficzenie procesu
Wejscie:
AL — kod powrotu; dostepny przez funkcje 4DH

’

Asembler - Podrecznik uzytkownika Strona:72

Dodatek A. Kod ASCII

Kod ASCII (American Standard Code for Information Interchange) jest specjal-
nym kodem lub systemem, ktéry zamienia duze litery, mafe litery, liczby, znaki inter-
punkcyjne oraz znaki specjalne na liczby od 0 do 127, réwniez na odwrét. W przy-
padku komputera IBM PC i w wielu komputerach kompatybilnych uzywany jest roz-
szerzony kod ASCII, zaprojektowany na 8 bitach. Kod ten zawiera dodatkowo:
symbole matematyczne, proste znaki graficzne, znaki specjalne, ktére sa reprezento-
wane liczbami z przedziatu od 128 do 255. Znaki ASCII z przedzialu 0-31 oraz 127,
128 do 159 (wlacznie) i 255 sa znakami sterujgcymi np.: kursorem na ekranie, drukarka.

Tabela A.1. Znaki ASCII

Znak Dziesietnie Szesnastkowo Dwdjkowo
NUL 0 00 0000 0000
@ (SOH) 1 01 0000 0001
@ (STX) 2 02 0000 0010
¥ (ETX) 3 03 0000 0011
¢ (EOT) 4 04 0000 0100
& (ENQ) 5 05 0000 0101
(ACK) 6 06 0000 0110
@ (BEL) 7 07 00000111
& (BS) 8 08 0000 1000
Q (HT) 9 09 0000 1001
(LF) 10 0A 0000 1010
g (VT) 11 0B 0000 1011
¢ (FF) 12 0C 0000 1100
» (CR) 13 oD 0000 1101
F(S0) 14 OE 0000 1110
1 (SI) 15 OF 0000 1111
» (DLE) 16 10 0001 0000
«(DCD) 17 11 0001 0001
1(DC2) 18 12 0001 0010
i1 (DC3) 19 13 0001 0011

Asembler - Podrecznik uzytkownika Strona:73

Asembler. Poradnik uzytkownika

Znak Dziesigtnie Szesnastkowo Dwojkowo
1 (DC4) 20 14 0001 0100
§ (NAK) 21 15 0001 0101
—(SYN) 22 16 0001 0110
t (ETB) 23 17 0001 0111
$ (CAN) 24 18 0001 1000
1 (EM) 25 19 0001 1001
- (SUB) 26 1A 0001 1010
« (ESC) 27 1B 0001 1011

v (FS) 28 1C 0001 1100
« (GS) 29 1D 0001 1101

+ (RS) 30 1E 0001 1110

¥ (US) 31 IF 0001 1111

odstep 32 20 0010 0000

! 33 21 0010 0001
" 34 22 0010 0010
35 23 00100011
5 36 24 0010 0100
% 37 25 0010 0101
& A 38 26 0010 0110
' 39 27 00100111
{ 40 28 0010 1000
) 41 29 0010 1001
* 42 2A 0010 1010
+ 43 2B 0010 1011
’ 44 2C 0010 1100
- 45 2D 0010 1101
. 46 2E 00101110
/ 47 2F 00101111
0 48 30 0011 0000
1 49 31 0011 0001
2 50 32 0011 0010
3 51 33 0011 0011
4 52 34 0011 0100
5 53 35 0011 0101
6 54 36 0011 0110
7 55 37 0011 0111

Asembler - Podrecznik uzytkownika Strona:74

Kod ASCII 79
Znak Dziesigtnie Szesnastkowo Dwdjkowo
8 56 38 0011 1000
9 57 39 0011 1001
58 3A 0011 1010
; 59 3B 0011 1011
< 60 3C 0011 1100
= 61 3D 0011 1101
> 62 3E 0011 1110
? 63 3F 0011 1111
d 64 40 0100 0000
A 65 41 0100 0001
B 66 42 0100 0010
C 67 43 0100 0011
D 68 44 0100 0100
E 69 45 0100 0101
F 70 46 01000110
G 71 47 01000111
H 72 48 0100 1000
I 73 49 0100 1001
J 74 4A 01001010
K 75 4B 0100 1011
L 76 4C 0100 1100
M 77 4D 0100 1101
N 78 AE 0100 1110
0 79 4F 0100 1111
P 80 50 0101 0000
0 81 51 0101 0001
R 82 52 0101 0010
s 83 53 0101 0011
T 84 54 0101 0100
U 85 55 0101 0101
\ 86 56 0101 0110
W 87 57 0101 0111
X 88 58 0101 1000
Y 89 59 0101 1001
7 90 5A 0101 1010
[91 5B 0101 1011
\ 92 5C 0101 1100

Asembler - Podrecznik uzytkownika

Strona:75

80 Asembler. Poradnik uzytkownika
Znak Dziesig¢tnie Szesnastkowo Dwéjkowo
] 93 5D 0101 1101
~ 94 5E 0101 1110
B 95 5F 0101 1111
96 60 0110 0000
a 97 61 0110 0001
b 98 62 0110 0010
c 99 63 0110 0011
d 100 64 0110 0100
e 101 65 01100101
£ 102 66 01100110
g 103 67 01100111
h 104 68 0110 1000
i 105 69 0110 1001
J 106 6A 0110 1010
k 107 6B 0110 1011
1 108 6C 0110 1100
m 109 6D 0110 1101
n 110 6E 0110 1110
0 111 6F 0110 1111
P 112 70 0111 1000
o} 113 71 0111 0001
r 114 72 0111 0010
S 115 73 01116011
t 116 74 0111 0100
u 117 75 0111 0101
v 118 76 01110110
w 119 77 01110111
x 120 78 0111 1000
y 121 79 0111 1001
z 122 7A 0111 1010
{ 123 7B 0111 1011
| 124 7C 01111100
} 125 7D 01111101
~ 126 7E 0111 1110
O\ (DEL) 127 7F 01111111
128 80 1000 0000

Asembler - Podrecznik uzytkownika

Strona:76

Kod ASCII 81

Znak Dziesietnie Szesnastkowo Dwdéjkowo
i 129 81 1000 0001
é 130 82 1000 0010
3 131 83 1000 0011
a 132 84 1000 0100
a 133 85 1000 0101
a 134 86 1000 0110
c 135 87 10000111
é 136 88 1000 1000
& 137 89 1000 1001
& 138 8A 1000 1010
I 139 8B 1000 1011
i 140 8C 1000 1100
i 141 8D 1000 1101
A 142 8E 1000 1110
A 143 8F 1000 1111
E 144 90 1001 0000
& 145 91 1001 0001
E 146 92 1001 0010
A 147 93 1001 0011
& 148 94 1001 0100
O 149 95 1001 0101
4 150 96 1001 0110
u 151 97 1001 0111
Y 152 98 1001 1000
O 153 99 1001 1001
U 154 9A 1001 1010
¢ 155 9B 1001 1011
£ 156 9C 1001 1100
¥ 157 9D 1001 1101
B 158 OE 1001 1110
f 159 9F 1001 1111
160 A0 1010 0000

Asembler - Podrecznik uzytkownika

Strona:77

82 Asembler. Poradnik uzytkownika
Znak Dziesigtnie Szesnastkowo Dwoéjkowo
i 161 Al 1010 0001
o) 162 A2 1010 0010
n 163 A3 1010 0011
i 164 A4 1010 0100
N 165 A5 1010 0101
a 166 A6 10100110
© 167 A7 10100111
: 168 A8 1010 1000
— 169 A9 1010 1001
- 170 AA 1010 1010
bs 171 AB 1010 1011
Y 172 AC 1010 1100
i 173 AD 1010 1101
« 174 AE 1010 1110
» 175 AF 1010 1111
176 BO 1011 0000
% 177 Bl 1011 0001
| 178 B2 1011 0010
| 179 B3 1011 0011
q 180 B4 1011 0100
q 181 B5 1011 0101
1 182 B6 1011 0110
T 183 B7 1011 0111
3 184 B¥ 1011 1000
9 185 B9 1011 1001
Il 186 BA 1011 1010
9 187 BB 1011 1011
4 188 BC 1011 1100
4 189 BD 1011 1101
d 190 BE 1011 1110
1 191 BF 1011 1111
L 192 Co 1100 0000
1 193 Cl 1100 0001
T 194 C2 1100 0010
F 195 C3 1100 0011
- 196 C4 1100 0100

Asembler - Podrecznik uzytkownika

Strona:78

Kod ASCII 83

Znak Dziesietnie Szesnastkowo Dwojkowo
+ 197 C5 1100 0101
F 198 Cé6 11000110
I 199 C7 11000111
LL 200 C8 1100 1000
F 201 9 1100 1001
AL 202 CA 1100 1010
I 203 CB 1100 1011
L 204 CC 1100 1100
= 205 CD 1100 1101
3 206 CE 1100 1110
& 207 CF 110G 1111
4 208 DO 1101 0000
5 209 DI 1101 0001
T 210 D2 1101 0010
L 211 D3 1101 0011
E 212 D4 11C¢1 0100
F 213 D3 1101 0101
T 214 D6 11010110
+ 215 D7 11010111
+ 216 D8 1101 1000
4 217 D9 1101 1001
r 218 DA 1101 1010
[| 219 DB 1101 1011
- 220 DC 1101 1100
] 221 DD 1101 1101
i 222 DE 1101 1110
- 223 DF 1101 1111
o 224 EO 1110 0000
I 225 El 1110 0001
T 226 E2 1110 0010
o 227 E3 11100011
5 228 E4 1110 0100
o 229 E5 11100101
n 230 E6 11100110
T 231 E7 11100111
b 232 E8 1110 1000

Asembler - Podrecznik uzytkownika

Strona:79

84 Asembler. Poradnik uzytkownika

Znak Dziesi¢tnie Szesnastkowo Dwojkowo
o) 233 E9 1110 1010
Q 234 EA 1110 1010
5 235 EB 1110 1011
o0 236 EC 1110 1100
@ 237 ED 1110 1101
€ 238 EE 1110 1110
N 239 EF 1110 1111
= 240 FO 1111 0000
+ 241 F1 1111 0001
> 242 F2 11110010
< 243 F3 11110011
[- 244 F4 1111 0100
| 245 F5 1111 0101
- 246 F6 11110110
~ 247 F7 11110111
° 248 F8 1111 1000
. 249 F9 1111 1001

250 FA 1111 1010
N 251 FB 1111 1011
n 252 FC 1111 1100
2 253 FD 1111 1101
m 254 FE 1111 1110
[255 FF 1111 1111

NUL — znak pusty;

SOH — start of heading (poczatek nagtéwka zawierajacego adres lub polecenie);
STX - start of text (poczatek tekstu);

ETX — end of text (koniec tekstu);

EOT — end of transmission (koniec transmisji);

ENQ — enquiry (zapytanie);

ACK - acknowledge (potwierdzenie);

BEL — bell (dzwonek);

Asembler - Podrecznik uzytkownika Strona:80

Kod ASCII 85

BS — backspace (cofnigcie mechanizmu drukujacego lub kursora o jedng pozycje
wstecz);

HT — tab (ht) (tabulacja, przesuniecie mechanizmu drukujacego lub kursora do na-
stepnej pozycji tabulacji);

LF — line feed (wysuniecie papieru lub przejscie kursora do nastepnego wiersza);

VT — vertical tabulation (tabulacja pionowa, ruch mechanizmu drukujacego lub kurso-
ra do nastepnego ustalonego wiersza);

CR — carriage return (powrét karetki, ruch mechanizmu drukujacego lub kursora do
poczatkowej pozycji w tym samym Wierszu);

SO — shift out (wyjécie z kodu, ostrzezenie, Ze nastgpne znaki nie moga by¢ interpre-
towane jako znaki ASCII, az do zatrzymania znaku SI);

SI — shift in (powrét do kodu, dalsze znaki naleza juz do znakéw ASCII);

DLE - data line escape (zmiana znaczenia nast¢pnego znaku, ktéry nie powinien by¢
traktowany jako znak ASCII, lecz jako kombinacja bitéw sterujaca praca urzadzenia);

DC1, DC2, DC3, DC4 — device control (sterowanie urzadzeniami nr 1, 2, 3, 4);
NAK — negative acknowledge (brak potwierdzenia, np. na nieprawidlowa informacjg);
SYN — synchronous file (znak synchronizacyjny);

ETB — end of transmission block (koniec transmisji bloku, znak stosowany do po-
dziatu przesytanego tekstu na mniejsze bloki);

CAN - cancel (anulowanie danych zawartych w bloku);

EM - end of medium (koniec no$nika informacji);

SUB — substitute (postawienie, znak wstawiony w odbiorniku w miejsce btednie ode-
branego znaku, np. po wykryciu blgdu parzystosci);

ESC — escape (zmiana kodu dla okreslonej liczby nastepnych znakéw);

FS, GS, RS, US — kody sterujace kursorem we wszystkich czterech kierunkach;

DEL — uniewaznienie znaku.

Asembler - Podrecznik uzytkownika Strona:81

Dodatek B. Potegi liczby 2
i liczby 16

Tabela B.1. Potegi liczby 2

— -~
0 1

1 2)b

2 4 L

3 8 A%

4 16 14

5 32 L

6 64 »o

7 128 (-9

8 256 17
9 512 D
10 1024 jiy
11 2048 i
12 409 i
13 8192 gL\
14 16384 [V
15 32768 v
16 65536 "¢
17 131 072 w7kt
18 262144 1Ly
19 524288 oo My
20 1048576 ',

Asembler - Podrecznik uzytkownika

Strona:82

n 2"

21 2097152 vk
22 4194304 1},
23 8388608 ~'iv
24 16 777 216 Ly,
25 33554432 vy
26 67 108 864 i vz
27 134 217 728 t)4vi
28 268 435 456 7, vt
29 536 870 912 1,5/ L
30 1073741 824 4L
31 2147483648 .7}
32 4294 967 296 - .i
33 8 589 934 592 &.¢
34 17 179 869 184 ((¥,
35 34 359 738 368, &
36 68 719 476 736/ (|,
37 137 438 953 472476F,
38 274 877 906 944)3
39 549 755 813 8885 't
40 1099 511 627 77617

88 Asembler. Poradnik uzytkownika

Tabela B.2. Potggi liczby 16

16

1

16

256

4 096

65 536

1048 576

16 777 216

268 435 456

4 294 967 296

68 719 476 736

lelw|lw|lan|ln|la|lw|w|=]|=] =

1099 511 627 776

S
(—]

Asembler - Podrecznik uzytkownika Strona:83

Dodatek C. Arytmetyka dwojkowa

1 szesnastkowa

C.1. Zamiana liczby dziesietnej na dwojkowa i odwrotnie

W systemie dwéjkowym mamy tylko dwie cyfry: O 1.
Przedstawmy liczbe dziesigtng 1996 w postaci dwdjkowe;:
1996:2=998 reszty 0
998:2=499 reszty 0
499:2=249Y reszty 1
249:2=124 reszty 1
124:2=62 reszty 0
62:2=31 reszty 0
31:2=15 reszty 1
15:2=T reszty 1
7:2=3 reszty 1
3:2=1 reszty 1
1:2=0 reszty 1

Odczytujemy reszty od konica do poczatku podziatu: 111110011001 jest to

wiasnie liczba dwdjkowa.
Liczbe dwojkowa 11111001100 zamieamy z powrotem na dziesigtna:

Tabela C.1. Zamiana liczby dwdjkowej na dziesigtna

1 1 1 1 1 0 0 1 1 0 0

2"} 29 28 27 26 25 24 23 22 21 20
=1024 | =512 | =256 | =128 | =64 =32 =16 =8 =4 =2 =1
1%¥1024 | + 1*512 | +1%256 | +1*128 | + 1%64 | + 0%32| + 0*16| + 1* 8 | + 1*4 | + 0*2 |+ 0*1=
=1996

Strona:84

Asembler - Podrecznik uzytkownika

90 Asembler. Poradnik uzytkownika

C.2. Zamiana liczby dziesietnej na szesnastkowa i odwrotnie
W systemie szesnastkowym mamy szesnascie ,,cyftr’™:

0123456789 ABCDEF, gdzie A=10 (dziesig¢), B=11 (jedenascie),
C=12 (dwanascie), D=13 (trzynascie), E=14 (czternascie),
F=15 (pigtnascie).

Przedstawmy liczb¢ dziesigtng 1996 w postaci szesnastkowe;:

1996:16 = 124 reszty 12
124:16 =7 reszty 12
7:16 = 0 reszty 7

Reszty z tego podziatu odczytujemy od korica, zamieniajac je na cyfry szesnastkowe:
7CC = 1996.

Liczbe szesnastkowa 7CC zamienimy z powrotem na dziesi¢tna:

Tabela C.2. Zamiana liczby szesnastkowej na dziesi¢tng

7 C<12 C<«12
16° 16' 16"
=256 =16 =1
7*256 +12*16 +12 %1 =
1996

C.3. Dodawanie liczb dwojkowych i szesnastkowych

11111001100 =1996D
+ 11101011 = 235D
100010110111 =2231D
Rysunek C.1. Dodawanie binarne
7 C G =199D
+ E B = 235D
8 B 7 = 2231D

Rysunek C.2. Dodawanie szesnastkowe

Asembler - Podrecznik uzytkownika Strona:85

Dodatek D. Lista rozkazow

procesora Pentium — opis ogolny

1. Rozkazy przestania danych

MOV - przeslij (kopiuj)

CMOVE/CMOVZ — przeslij warunkowo, jesli rowne/jesli zero

CMOVNE/CMOVNZ - prze§lij warunkowo, jesli nie rowne/jesli nie zero
CMOVA/CMOVNBE - przeslij warunkowo, jesli powyzej/jesli nie ponizej lub réwne
CMOVAE/CMOVNB - przeslij warunkowo, jesli powyzej lub réwne/jesli nie ponizej
CMOVB/CMOVNAE - przeslij warunkowo, jesli ponizej/jesli nie powyzej lub réwne
CMOVBE/CMOVNA - przeslij warunkowo, jesli ponize] lub réwne/jesli niec powyzej
CMOVG/CMOVNLE — przeslij warunkowo, je§li wigksze/jesli nie mniejsze lub réwne
CMOVGE/CMOVNL - przeslij warunkowo, jesli wigksze lub réwne/jesli nie mniejsze
CMOVL/CMOVNGE - przeslij warunkowo, jesli mniejsze/je$li nie mniejsze lub rowne
CMOVLE/CMOVNG - prze$lij warunkowo, jesli mniejsze lub réwne/jesli nie wigksze
CMOVC - przeslij warunkowo, jesli przeniesienic

CMOVNC - prze$lij warunkowo, jesli brak przeniesienia

CMOVO - przeslij warunkowo, jesli nadmiar

CMOVNO - przeslij warunkowo, jesli brak nadmiaru

CMOVS - przeslij warunkowo, jesli znak (ujemny)

CMOVNS - przeslij warunkowo, jesli brak znaku (nie ujemny)

CMOVP/CMOVPE - przeslij warunkowo, jesli parzyste/jesli parzystos¢ parzysta
CMOVNP/CMOVPO - przeslij warunkowo, jesli nieparzyste/jesli parzystoS¢ nieparzysta
XCHG - wymiana

BSWAP — odwrécenie kolejnosci bajtow

XADD - zamiana operandéw i dodawanie
CMPXCHG - poréwnywanie i zamiana
CMPXCHGS8B — poréwnywanie i zamiana 8 bajtow
PUSH - odf6z na stos

POP - zdejmij ze stosu

PUSHA/PUSHAD - umieszczenie na stosie wszystkich rejestréw ogélnego zastosowania
POPA/POPAD - zdejmowanie ze stosu wszystkich rejestréw ogélnego przeznaczenia
IN — odczyt z portu wejsciowego

OUT - zapis do portu wejsciowego

CWD/CDQ — konwersja stowa na dwustowo/konwersja dwusfowa na poczworne stowo
CBW/CWDE - konwersja bajtu na stowo/konwersja stowa na podwdjne stowo

Asembler - Podrecznik uzytkownika Strona:86

92 Asembler. Poradnik uzytkownika

MOVSX — przestanie danych do rejestru o wigkszej dtugosci z zachowaniem znaku
MOVZX — przestanie dtuzszych danych z uzupetnieniem zerami

2. Rozkazy arytmetyki binarnej

ADD - dodawanie catkowite

ADC - dodawanie catkowite z przenicsicniem
SUB - odejmowanie

SBB - odejmowanie calkowite z pozyczka
IMUL — mnozenie ze znakiem

MUL — mnozenie bez znaku

IDIV — dzielenie ze znakiem

DIV — dzielenie bez znaku

INC - zwigkszenie o 1 (inkrementacja)
DEC — zmniejszanie o 1 (dekrementacja)
NEG — negacja

CMP - poréwnywanic

3. Rozkazy arytmetyki dziesietnej

DAA — korekcja upakowanego kodu BCD po dodawaniu
DAS - korekeja upakowanego kodu BCD po odejmowaniu
AAA — korekcja po dodawaniu

AAS — korekcja po odejmowaniu

AAM - korekcja po mnozeniu

AAD - korekcja przed dzieleniem

4. Rozkazy logiczne

AND - iloczyn logiczny

OR — suma logiczna

XOR - alternatywa wykluczajaca (logiczna nierdwnowazno$c)
NOT - negacja logiczna

5. Rozkazy przesunieé logicznych i arytmetycznych

SAR - przesuniecie arytmetyczne w prawo

SHR - przesunigcie logiczne w lewo

SAL/SHL - przesunigcie arytmetyczne w lewo/przesunigcie logiczne w lewo
SHRD — podwdjne przesunigecie w prawo

SHLD — podwdjne przesunig¢cie w lewo

ROR - obrét w prawo

ROL - obrét w lewo

RCR - obrét w prawo z wykorzystaniem flagi przeniesienia, CF

RCL — obrét w lewo z wykorzystaniem flagi przeniesienia, CF

6. Rozkazy operujace na pojedynczych bitach i bajtach

BT — testowanie bitu

Asembler - Podrecznik uzytkownika Strona:87

Lista rozkazéw procesora Pentium 93

BTS — testowanie bitu z ustawieniem

BTR — testowanie bitu z zerowaniem

BTC - testowanie bitu z negacja

BSF — przeszukiwanie bitéw w przod

BSR — przeszukiwanie bitéw wstecz

SETE/SETZ — ustaw baijt, jesli rowne/jesli zero

SETNE/SETNZ — ustaw bajt, jesli nie réwne/jesli nie zero
SETA/SETNBE — ustaw bajt, jesli powyzej/jesli nie powyzej lub réwne
SETAE/SETNB/SETNC — ustaw bajt, jesli powyzej lub réwne/jesli nie ponizej/jesli brak prze-
niesienia

SETB/SETNAE/SETC — ustaw bajt, jesli ponizej/jesli nie powyzej lub réwne/jesli przeniesie-
nie

SETBE/SETNA - ustaw bajt, jesli ponizej lub rowne/jesli nie powyze;
SETG/SETNLE — ustaw bajt, jesli wigksze/jesli nie mniejsze lub réwne
SETGE/SETNL — ustaw baijt, jesli wigksze lub réwne/jesli nie mniejsze
SETL/SETNGE — ustaw bajt, jesli mniejsze/jesli nie wigksze lub rowne
SETLE/SETNG — ustaw bajt, jesli mniejsze lub réwne/jesli nie wigksze
SETS — ustaw bajt, jesli znak (ujemny)

SETNS — ustaw bajt, jesli brak znaku (nie ujemny)

SETO — ustaw bajt, jesli powyzej

SETNO - ustaw baijt, jesli nie powyzej

SETPE/SETP — ustaw baijt, jesli parzystos¢ parzysta/jesli parzysta
SETPO/SETNP — ustaw bajt, jesli parzystos¢ nieparzysta/jesli nieparzysta
TEST — poréwnywanie logiczne

7. Rozkazy sterujace przesylaniem danych

JMP — skok bezwarunkowy

JE/TZ — skok (warunkowy), jesli rowne/jesli zero

JNE/INZ — skok, jesli nie réwne/jesli nie zero

JA/INBE - skok, jesli powyzej/jesli nie ponizej lub rowne
JAE/INB ~ skok, jesli powyzej lub réwne/jesli nie ponize)
JB/INAE - skok, jesli ponizej/jesli nie powyzej lub réwne
JBE/INA — skok, jesli ponizej lub réwne/jesli nie powyze]
JG/INLE - skok, jesli wieksze/jesli nie mniejsze lub rowne
JGE/INL — skok, jesli wigksze lub réwne/jesli nie mniejsze
JL/INGE - skok, jesli mniejsze/jesli wieksze lub réwne
JLE/ING - skok, jesli mniejsze lub réwne/jesli nie wigksze
JC — skok, jesli przeniesienie, CF

INC - skok, jesli brak przeniesienia

- JO — skok, jesli nadmiar

INO - skok, jesli brak nadmiaru

JS — skok, jesli znak (ujemny)

INS - skok, jesli brak znaku (nie ujemny)

Asembler - Podrecznik uzytkownika Strona:88

94 Asembler. Poradnik uzytkownika

JPO/INP - skok, jesli parzysto$¢ nieparzysta/jesli brak parzystosci

JPE/IP — skok, jesli parzystos¢ parzysta/jesli parzysta

JCXZ/JECXZ — skok, jesli rejestr CX zero/jesli rejestr ECX zero

LOOP - skok z licznikiem w rejestrze ECX

LOOPZ/LOOPE - skok z licznikiem w rejestrze ECX i zero/z licznikiem w rejestrze ECX
iréwne

LOOPNZ/LOOPNE - skok z licznikiem w rejestrze ECX i nie zero/z licznikiem w rejestrze
ECX i nie réwne

CALL — wywotaj procedure

RET - powrdt z procedury

IRET — powrét z przerwania

INT — przerwanie programowe

INTQO — przerwanie programowe przy nadmiarze

BOUND - wykrywanie warto$ci poza zakresem

ENTER - wejscie do procedury wyzszego poziomu

LEAVE - wyjscie z procedury wyzszego poziomu

8. Rozkazy lancuchowe

MOVS/MOVSB - przeslij tancuch/bajt taticucha

MOVS/MOVSW — przeslij tancuch/stowo taficucha

MOVS/MOVSD - przeslij faficuch/podwdjne stowo tafcucha
CMPS/CMPSB - poréwnaj taficuch/bajt taficucha

CMPS/CMPSW - poréwnaj taicuch/stowo taficucha

CMPS/CMPSD - poréwnaj taiicuch/podwdjne sfowo tancucha
SCAS/SCASB - przeszukaj faficuch/bajt tancucha

SCAS/SCASW — przeszukaj fanicuch/stowo faiicucha

SCAS/SCASD - przeszukaj faficuch/podwéijne stowo faficucha
LODS/LODSB - faduj tadcuch/baijt taficucha

LODS/LLODSW — taduj taficuch/stowo laficucha

LODS/LODSD - taduj faicuch/podwéjne stowo taficucha
STOS/STOSB — umies¢ w pamigci fancuch/bajt taicucha
STOS/STOSW — umies¢ w pamigci tancuch/stowo taficucha
STOS/STOSD — umies¢ w pamigci taiicuch/podwdjne stowo taficucha
REP — powt6rz, dopdki ECX nie jest zerem

REPE/REPZ — powtérz, dopéki réwne/dopdki zero

REPNE/REPNZ — powtorz, dopdéki nie réwne/dopdki nie zero
INS/INSB - wprowadZ faficuch z portu/bajt faficucha z portu

INS/INSW — wprowadz tancuch z portu/stowo taficucha z portu
INS/INSD — wprowad? faficuch z portu/podwdéjne stowo taficucha z portu
OUTS/OUTSB - wyprowadZ tancuch do portu/bajt taiicucha do portu
OUTS/OUTSW — wyprowadZ faiicuch do portu/stowo faficucha do portu
OUTS/OUTSD — wyprowadzZ taiicuch do portu/podwdjne sfowo taiicucha do portu

Asembler - Podrecznik uzytkownika Strona:89

Lista rozkazéw procesora Pentium

95

9. Rozkazy sterujace flagami

STC — ustaw flage przeniesienia, CF

CLC — wyczys¢ (wyzeruj) flage przeniesienia, CF

CMC - neguj flage przeniesienia, CF

CLD - zeryj flage kierunku, DF

STD — ustaw flage kierunku, DF

LAHF — tadyj flagi do rejestru AH

SAHF — zapamigtaj rejestr AH w rejestrze FLAGS
PUSHF/PUSHFD — odi6z rejestr EFLAGS na stos
POPF/POPFD - zdejmij ze stosu rejestr EFLAGS

STI — ustaw flage przerwania, IF

CLI — wyczys¢ flage przerwania, IF

10. Rozkazy rejestrow segmentowych

LDS - tadowanie dalekiego wskaZnika, uzywajgc DS
LES - ladowanie dalekiego wskaZnika, uzywajac ES
LFS —tadowanie dalekiego wskaznika, uzywajac FS
LGS — fadowanie dalekiego wskaZnika, uzywajac GS
LSS — tadowanie dalekiego wskaZnika, uzywajac SS

11. Rozkazy mieszane

LEA —faduj adres efektywny

NOP — brak operacji, ,,nic nie ré6b”

UB?2 — niezdefiniowany rozkaz

XLAT/XLATB - ttumaczenie na podstawie tablicy translacji
CPUID - identyfikacja procesora, CPU

12. Rozkazy systemowe

LGDT - tadyj rejestr GDTR

SGDT — umies¢ w pamigci rejestr GDTR
LLDT —taduj rejestr LDTR

SLDT - umies¢ w pamigci rejestr LDTR
LTR - taduj rejestr zadania

STR — umies¢ w pamieci rejestr zadania
LIDT — taduyj rejestr IDTR

SIDT — umies$¢ w pamigci rejestr IDTR
MOYV - taduj i zapamigtaj rejestry sterujace
LMSW — taduj rejestr stowa stanu maszyny
SMSW -- zapamigtaj sfowo stanu maszyny
CLTS — zeruj flage przelgczania zadan
ARPL - zmiana pola RPL selektora

LAR - taduj bajt praw dostgpu

LSL — taduj granicg segmentu

Asembler - Podrecznik uzytkownika Strona:90

96 Asembler. Poradnik uzytkownika

VERR — weryfikuj segment do odczytu

VERW — weryfikuj segment do zapisu

MOV —taduj i zapamigtaj rejestry uruchomieniowe

INVD — opréznij wewnetrzna pamieé podreczng (brak opéznionego zapisu)
WBINVD - opréznij pamig¢ podrgczna, z opdZnionym zapisem
INVLPG - opréznij pamieé TLB

LOCK (przedrostek) — naktywnienie sygnatu LOCK

HLT - zatrzymanie procesora

RSM — powr6t z trybu zarzadzania systemem

RDMSR — odczyt ze specjalnego rejestru (MSR)

WRMSR - zapis do specjalnego rejestru (MSR)

RDPMC — odczyt licznika kontroli wydajnosci (systemu)
RDTSC - odczyt licznika etykiety czasowej

D.1. Rozkazy zaimplementowane w technologii MM X™

1. Rozkazy przestania danych

MOVD - przeslij podwéijne stowo
MOVQ — przeslij poczwérne stowo

2. Rozkazy konwersji

PACKSSWRB - pakowanie stowa na bajty z nasyceniem, ze znakiem

PACKSSDW — pakowanie podwéjnego stowa na stowa z nasyceniem, ze znakiem
PACKUSWRB — pakowanie stowa na bajty z nasyceniem, bez znaku

PUNPCKHBW - rozpakowywanie ,,starszego” bajtu na stowo

PUNPCKHWD - rozpakowywanie ,,starszego” sfowa na podwdéjne stowo

- PUNPCKHDQ - rozpakowywanie , starszego” podwdjnego stowa na poczwérne stowo
PUNPCKLBW - rozpakowywanie ,,mtodszego” bajtu na stowo

PUNPCKLWD - rozpakowywanie , mtodszego” stowa na podwéjne stowo
PUNPCKLDQ - rozpakowywanie ,,mtodszego” podwéjnego sfowa na poczwéme stowo

3. Rozkazy arytmetyczne (danych spakowanych)

PADDB — dodaj spakowane bajty

PADDW — dodaj spakowane stowa

PADDD - dodaj spakowane dwustowa

PADDSB — dodaj spakowane bajty z nasyceniem

PADDSW -~ dodaj spakowane sfowa z nasyceniem
PADDUSB - dodaj spakowane bez znaku bajty z nasyceniem
PADDUSW - dodaj spakowane bez znaku stowa z nasyceniem
PSUBB — odejmij spakowane bajty

PSUBW — odejmij spakowane stowa

PSUBD - odejmij spakowane dwustowa

PSUBSB - odejmij spakowane bajty z nasyceniem

Asembler - Podrecznik uzytkownika Strona:91

Lista rozkazow procesora Pentium 97

PSUBSD - odejmij spakowane stowa z nasyceniem

PMULHW — mnoéz spakowane stowa i zapamigtaj ,,wyzsze” stowo
PMULW — mnoéz spakowane stowa 1 zapamietaj ,,nizsze” sfowo
PMADDWD — mnéz i dodawaj spakowane stowa

4. Rozkazy porownywania

PCMPEQB — poréwnuj spakowane bajty, jesli rowne: wynik = Oxff, jesli nie: wynik =0
PCMPEQW — poréwnuj spakowane sfowa, jesli rowne: wynik = Ox{f, jesli nie: wynik =0
PCMPEQD - poréwnuj spakowane dwustowa, jesli réwne: wynik = Oxff, jesli nie: wynik =0
PCMPGTB - poréwnuj spakowane bajty, jesli wigksze: wynik = Oxff, jesli nie: wynik = 0
PCMPGTW — poréwnuj spakowane stowa, jesli wicksze: wynik = Oxff, jesli nie: wynik =0
PCMPGTD - poréwnuj spakowane dwustowa, jesli wigksze: wynik = Oxff, jesh nie: wynik = 0

5. Rozkazy logiczne

PAND - bitowe logiczne AND
PANDN - bitowe logiczne NAND
POR - bitowe logiczne OR

PXOR - bitowe logiczne XOR

6. Rozkazy przesuniec logicznych i arytmetycznych

PSLLW — przesuni¢cie logiczne w lewo spakowanego stowa

PSLLD — przesunigcie logiczne w lewo spakowanego dwustowa

PSLLQ — przesunigcie logiczne w lewo spakowanego poczwodrnego stowa
PSRLW — przesuniecie logiczne w prawo spakowanego sfowa

PSRLD - przesunigcie logiczne w prawo spakowanego dwustowa

PSRLQ - przesunigcie logiczne w prawo spakowanego poczwornego stowa
PSRAW — przesunigcie arytmetyczne w prawo spakowanego stowa
PSRAD - przesunigcie arytmetyczne w prawo spakowanego dwustowa

7. Rozkaz stanu zarzadzania
EMMS — opuszczenie stanu MMX

D.2. Rozkazy koprocesora, FPU

1. Rozkazy przestania danych

FLD — taduj liczbg rzeczywista

FST — zachowaj liczbe rzeczywisty

FSTP — zachowaj liczbe rzeczywista 1 zdejmij ze stosu
FILD - taduj liczbe catkowitg

FIST — zachowaj liczbe catkowita

FISTP — zachowaj liczbg calkowita i zdejmij ze stosu

3 FBLD - taduj liczbe w kodzie BCD

§ FBSTP- taduj liczbe w kodzie BCD i zdejmij ze stosu

Asembler - Podrecznik uzytkownika Strona:92

98 Asembler. Poradnik uzytkownika

FXCH - zamien rejestry

FCMOVE - przeslij warunkowo liczbe zmiennoprzecinkowa, jesli réwne

FCMOVNE - przeslij warunkowo liczbe zmiennoprzecinkowa, jesli nie réwne

FCMOVB - przeslij warunkowo liczbg zmiennoprzecinkowa, jesli ponizej

FCMOVBE - przeslij warunkowo liczbe zmiennoprzecinkowa, jesli ponizej lub réwne
FCMOVNB - przeslij warunkowo liczbe zmiennoprzecinkowa, jesli nie ponizej
FCMOVNBE - przeslij warunkowo liczb¢ zmiennoprzecinkowa, jesli nie ponizej lub réwne
FCMOVU - przeslij warunkowo liczbg¢ zmiennoprzecinkowa, jesli nieuporzadkowane
FCMOVNU - przeslij warunkowo liczbg zmiennoprzecinkows, jesli nie nieuporzadkowane

2. Rozkazy arytmetyczne

FADD - dodaj liczbe rzeczywista

FADDP — dodaj liczbe¢ rzeczywista i zdejmij ze stosu

FIADD - dodaj liczbg catkowita

FSUB - odejmij liczbe rzeczywistg

FSUBP - odejmij liczbg rzeczywista i zdejmij ze stosu

FISUBP — odejmij liczbg catkowity

FSUBR — odejmij liczbe catkowity (odejmowanie odwricone)

FSUBRP - odejmij liczbe catkowita i zdejmij ze stosu (odejmowanie odwricone)
FISUBR - odejmij liczbe catkowita i zdejmij ze stosu (odejmowanie odwrocone)
FMUL - pomnéz liczbg rzeczywista

FMULP - pomnéz liczbg rzeczywists i zdejmij ze stosu

FIMUL — pomnéz liczbg catkowity

FDIV - podziel liczbe rzeczywista

FDIVP - podziel liczbg rzeczywistg i zdejmij ze stosu

FIDIV - podziel liczbg catkowity

FDIVR - podziel liczbe rzeczywista (dzielenie odwrdcone)

FDIVRP — podziel liczbe rzeczywistg i zdejmij ze stosu (dzielenie odwrdcone)
FIDIVR - podziel liczb¢ catkowity (dzielenie odwrdcone)

FPREM - oblicz reszt¢ z dzielenia

FPREMI — oblicz reszte z dzielenia zgodnie z norma IEEE

FABS — oblicz wartos¢ absolutng

FCHS - zmien znak

FRNDINT - zaokraglij do liczby catkowitej

FSCALE - skalowanie przez liczbg bedacy potega liczby 2

FSQRT -- pierwiastek kwadratowy

EXTRACT - obliczanie mantysy i operandu

3. Rozkazy porownywania

FCOM - poréwnaj liczby rzeczywiste

FCOMP — poréwnaj liczby rzeczywiste i zdejmij ze stosu

FCOMPP - poréwnaj liczby rzeczywiste 1 dwukrotnie zdejmij ze stosu
FUCOM - nieuporzadkowane poréwnywanie liczb rzeczywistych

Asembler - Podrecznik uzytkownika Strona:93

Lista rozkazéw procesora Pentium 99

FUCOMP - nieuporzadkowane poréwnywanie liczb rzeczywistych i zdjecie ze stosu
FUCOMPP - nieuporzadkowane poréwnywanie liczb rzeczywistych i dwukrotne zdjecie ze
stosu

FICOM - poréwnywanie liczb catkowitych

FICOMP — poréwnywanie liczb catkowitych i zdjecie ze stosu

FCOMI - poréwnywanie liczb rzeczywistych i ustawienie EFLAGS

FUCOMI -- nieuporzadkowane poréwnywanie liczb rzeczywistych i ustawienic EFLAGS
FCOMIP - poréwnywanie rzeczywiste, ustawienie EFLAGS, i zdjecie ze stosu

FUCOMIP — nieuporzadkowane poréwnywanie rzeczywiste, ustawienie EFLAGS, 1 zdjecie ze
stosu

FTST — test poréwnywania na liczbach rzeczywistych

FXAM - badanie liczby rzeczywistej

4. Rozkazy funkcji przestepnych

FSIN - sinus

FCOS - cosinus

FSINCOS - sinus i cosinus
FPTAN - tangens
FPATAN - arcus tangens

F2XM]1 -2 -1
FYL2X — yXlog x
2

FYL2XP1 — yXlog (x+1)

5. Rozkazy tadowania statych

FLD1 - taduj +1.0

FLDZ - taduj +0.0

FLDPI — FLDPI — FLDL2E - taduj log e
2

FLDLN?2 - faduj log 2

FLDL2T - tadyj log 10
2

FLDLG2 —faduyj log 2
10

6. Rozkazy sterowania koprocesorem

FINCSTP — zwi¢kszenie (inkrementacja) wskaZnika wierzchofka stosu

FDECSTP — zmnicjszenie (dekrementacja) wskazZnika wierzchotka stosu

FFREE - zwolnienie rejestru zmiennoprzecinkowego

FINIT/ENINIT - inicjalizacja jednostki zmiennoprzecinkowe;j

FCLEX/FNCLEX - zerowanie znacznikéw biedow

FSTCW/FNSTCW - zapis rejestru sterowania koprocesora, FPU jednostki zmienno-
przecinkowe;j

FLDCW - tadowanie stowa sterujacego

FSTENV/FNSTENYV - zapis srodowiska jednostki FPU

Asembler - Podrecznik uzytkownika Strona:94

100

Asembler. Poradnik uzytkownika

FLDENYV — tadowanie §rodowiska jednostki FPU
FSAVE/FNSAVE - zapis zawartosci jednostki FPTUJ-
FRSTOR - odtworzenie stanu FPU

FSTSW/ENSTSW — zapis rejestru stanu jednostki FPU
WAIT/FWAIT - stan czekania jednostki FPU

FNOP — ,.nic nie r6b” jednostki FPU

Asembler - Podrecznik uzytkownika Strona:95

Dodatek E. Maty stownik

asemblerowy

Adres — jednoznaczny identyfikator komorki pamigci. Programista piszac programy
w jezyku Asembler uzywa tylko adresu logicznego, SEGMENT:OFFSET. Na
podstawie adresu logicznego, zapisanego wewnatrz programu, adres przeliczany
jest na adres fizyczny rozkazu w pamigci w nastgpujacy sposéb: adres fizyczny
rozkazu = zawarto$¢ rejestru segmentowego CSX10H (SEGMENT) + zawartos¢
rejestru IP (OFFSET), np. CS = CO18H, IP = 0129H, adres fizyczny = CO18H X
10H+0129H = C0180+ 0129H= C02A9H= 787113D.

Asembler — program ttumaczacy (translator) program Zrodtowy zapisany w jezyku Asem-
bler na program wynikowy w jezyku wewnetrznym. Asembler (drugie znaczenie pi-
sane duzq literg) — jezyk programowania niskiego poziomu, jezyk symboliczny,
ktérego budulcem sa nazwy symboliczne okreSlajace rozkazy procesora, instrukcje
jezyka, adresy komérek pamigci, state, parametry i inne elementy uzywane w progra-
mie (Zrédtowym). Programy napisane w jezyku Asembler musza by¢ przed zatado-
waniem i wykonaniem w pamiect przettumaczone na j¢zyk wewnetrzny.

Bajt — ciag bitow o dtugosci 8 bitéw.
BIOS-u obszar roboczy — 256-bajtowy obszar roboczy BIOS-u rozciagajacy si¢ od
adresu 00400H-004FFH.

Bit — pojedyncza cyfra w zapisie dwdjkowym.
CMOS-u obszar — 64-bajtowy obszar pamigci zawierajacy dane konfiguracyjne kom-
putera. Dostgp do obszaru CMOS mozliwy jest poprzez funkcje systemu (opera-

cyjnego) lub bezposrednio poprzez porty: port o adresie 71H — dwukierunkowy -
rejestr danych pamigci CMOS i port 70H ~ rejestr adresowy pamigci CMOS.

Deasembler — program-translator dzialajacy odwrotnie do asemblera, a mianowicie
program tlumaczacy kody jezyka wewngtrznego na symboliczne nazwy w jezyku
Asembler.

DOS/BASIC obszar roboczy — 512-bajtowy obszar roboczy przeznaczony dla DOS/
BASIC, rozciagajacy sie od adresu 00500H-006FFH.

ICA — (ang. intra-application communications area) obszar komunikacji do wewne-
trznych zastosowan. 16-bajtowy obszar pamig¢ci operacyjnej polozony miedzy
adresami od 004F0 do 004FF. Uzywany do przechowywania danych, ktére moga
by¢ wspdlne dla kilku réznych programéw.

Asembler - Podrecznik uzytkownika Strona:96

102 Asembler. Poradnik uzytkownika

Instrukcja asemblera — instrukcja jezyka Asembler zawierajaca nastepujace pola: [etykie-
ta[:]] mnemonik [argument (operand)] [:komentarz]. Pola ujete w nawiasy [] sa
opcjonalne, pole mnemonik wystepuje zawsze. Pole argumentu (operandu) wystepuje
wowczas, gdy wymaga tego dany rozkaz procesora posiadajacy zawsze swoja nazwe
mnemoniczna. Gdy w linii instrukcji wystapi komentarz, to musi by¢ poprzedzony
znakiem Srednika ;' Opcjonalne pole etykiety przypisuje nazwe instrukcji asemblera.

Jezyk wewnetrzny — jezyk skladajacy si¢ z kodéw dwdjkowych,

Lista rozkazéw — zbiér wszystkich rozkazéw, ktére moga by¢ wykonywane przez
dany procesor.

Mnemonik — symboliczna nazwa kodu rozkazu, np. MOV...

Model pamigci — pojecie definiujace najwickszy rozmiar dla programéw zawierajacych
segmenty kodu 1 segmenty danych. Zdefiniowano sze$¢ modeli pamieci: tiny
(model zdefiniowany dla programéw postaci COM — kod programu i kod danych
musi zawieraC si¢ w tym samym 64 KB segmencie), small (kod programu musi
zmiescic si¢ w pojedynczym 64 KB segmencie, kod danych musi zawiera¢ sic we-
wnatrz oddzielnego segmentu; kod programu i kod danych sa typu bliskiego), me-
dium (kod programu moze by¢ wiekszy niz 64 KB, ale kod danych musi zmiescic
si¢ w obrebie pojedynczego 64 KB segmentu; kod programu jest typu dalekiego
a kod danych sg typu bliskiego), compact (kod programu musi zmiescié si¢ w po-
Jedynczym 64 KB segmencie, ale kod danych moze byé wiekszy niz 64 KB: kod
programu jest typu bliskiego, kod danych typu dalekiego), large (kody programu
1 kody danych moga by¢ wigksze niz 64 KB, ale pojedynczy obszar danych nie
moze by¢ wigkszy niz 64 KB; kod programu i kod danych sa typu dalekiego), huge
(kody programu i kody danych mogg by¢ wigksze niz 64 KB; kod programu i kod
danych sa typu dalekiego. Wskazniki do elementéw wewnatrz obszaru sa typu da-
lekiego). Opisywane modele pamigci odpowiadaja modelom pamieci uzywanym
przede wszystkim przez jezyki wysokiego poziomu (Turbo C, Turbo Pascal).
W programie asemblerowym poleceniem wyznaczajacym wtasciwy model pamieci
Jest dyrektywa .model (z kropka na poczatku nazwy).

Nanosekunda — jedna miliardowa cze$é sekundy, 10” sek.

Offset — w jezyku Asembler wielko$¢ zawarta w rejestrze IP (wskaznik rozkazéw),
okreslajaca adres wzgledem poczatku segmentu programu.

Pamig¢ operacyjna — pamigc bedaca areng dla wykonywanych na niej programéw.

Pikosekunda — jedna bilionowa czes¢ sekundy, 10" sek.

Port — miejsce w wyréznionej przestrzeni adreséw wejscia/wyjscia, identyfikowane
przez swdj adres bedacy liczba od 0 do 65535, Kazdy port pozwala wystaé/po-

brac jeden bajt lub stowo (dwa bajty) do lub z rejestru. W jezyku Asembler opc-
racje na pbrtach wykonuje sie tylko za pomoca rozkazéw: IN ... (pobranie da-

Asembler - Podrecznik uzytkownika Strona:97

Maly stownik asemblerowy 103

nych z portu) i OUT ... (wystanie danych do portu). Adres portu podaje si¢ jako
liczbg, gdy jego wartos¢ nie przekracza 255, badz w rejestrze DX,

Program typu COM - (ang. command — rozkaz); programy typu COM nazywane sa
€z¢stq mapg pamigel — postac programu na dysku jest wierna kopia tego, co jest
tadowane i uruchamiane w pamieci. Podczas fadowania do pamigci programu ty-
pu COM wszystkie rejestry segmentowe (CS, DS, ES, SS) otrzymuja te sama
warto$¢, warto$¢ segmentu bloku PSP. Zawarto$é rejestru IP Wynosi zawsze
100H; sterowanie jest przekazywane tuz za 256-bajtowy blok PSP, Ze wzgledu
na to pierwsza instrukcja w programie musi rozpoczynaé sie od adresu
CS:0100H; w programie asemblerowym odpowiednio umieszcza si¢ dyrektywe
ORG 100H (ORG 256D). Programy typu COM sa krétsze niz programy typu
EXE, nie moga by¢ dtuzsze niz 64 KB (to jest ich wada, ale i zaleta), sa szybciej
fadowane do pamigci. Ze wzgledu na to, ze nie wymagaja stosu, rejestru DS
1 ES, fatwiej jest je napisac niz programy EXE. Wady programéw COM: wyma-
gaja bardzo Scistych (chociaz prostszych niz programy EXE) metod kodowania;
mogg miec tylko jeden segment, przez co brak jest wyraznego rozdziatu miedzy
danymi a instrukcjami; nie moga uzyskaé¢ dostepu do procedur lub danych za-
wartych w innym segmencie. Konstrukcja plikéw COM utrudnia korzystanie
z moduiéw zewnetrznych, w ktérych nazwy segmentéw sg akurat inne od nazw
uzytych w segmencie macierzystym.

Program typu EXE — (ang. execution — wykonanie); program o charakterze relokowal-
nym, przesuwalnym. Programy typu EXE moga by¢ tadowane i uruchamiane w pa-
migcl, poczawszy od dowolnego adresu bedacego wielokrotnoscig liczby 16D(10H).
Ich budowa moze by¢ wiclosegmentowa. Segmenty (do 64 KB) majg zapewniona
wzajemng komunikacje za pomocg 32-bitowych adreséw logicznych. Zawarto$¢ pro-
gramu EXE sktada si¢ z nagféwka programu i z modutu (programu) przeznaczonego
do umieszczenia go w pamigci. W nagléwku wyréznia sie czesé sformatowang
o ustalonej dtugosci i zawartosci poszczegdlnych pél oraz tablice relokacji. W czesci
sformatowanej nagiéwka, zaczynajacej si¢ znacznikiem ze znakami 'MZ, zawarty
jest opis pliku oraz wszelkie wymagania dotyczace przydziatu pamieci operacyjnej,
informacja o poczatkowej zawartosci rejestréw. Wielko$é programu EXE jest ogra-
niczona tylko wielko$cia pamigci dyskowe;.

Program wynikowy — program powstaty po translacji programu Zrodtowego, majacy
nieczytelna posta¢ dla programisty, zawierajacy kody zapisane w jezyku we-
wnetrznym.

Program Zrédtowy — program, ktérego elementami sa czytelne dla programisty na-
zwy instrukeji, rozkazéw, polecen, nalezace do danego jezyka programowania.

Programy rezydentne — specjalnie skonstruowane programy pozostawiajace swoj kod
w pamigci (programy TSR — ang. terminate but stay resident). Kod programu rezy-
dentnego chroniony jest w pamieci na réwni z kodem systemu operacyjnego.

Asembler - Podrecznik uzytkownika Strona:98

104 Asembler. Poradnik uzytkownika

Programy uruchomieniowe (ang. debbuggers) — programy stuzace do uruchamiania
programéw, modyfikowania, testowania, wykonywania ich w catosci lub w okre-
§lonej czesci; najbardziej znanym programem uruchomieniowym jest program
DEBUG.EXE.

PSP — 256-bajtowy (100H) blok wstgpny programu, poczatek tego obszaru okreslany
jest jako poczatek segmentu programu. Blok wstepny programu, PSP, stanowi
obszar komunikacyjny mi¢dzy programem a systemem.

Przechowywanie odwrotne — sposéb przechowywania informacji w pamigci (stoso-
wany w pamigciach komputeréw osobistych) polegajacy na tym, iz dwubajtowe
stfowa zapisywanc sa w odwrotny sposob niz przedstawia si¢ je W normalnym za-
pisie. Na przykfad liczba szesnastkowa FO7B zapisana zostanie w pamigci, W po-
staci kolejno wystepujacych bajtéw 7B oraz FO. -

Przerwanie — sygnat informujacy procesor o zajéciu jakiego$ zdarzenia. Przerwanie
zwykle wywoluje akcje programu; powstaje w wyniku zdarzenia, ktorego czas
wystgpienia jest nieoczekiwany.

Rejestr — podstawowa komérka pamigci wewnatrz procesora funkcjonalnie bgdaca
zespofem przerzutnikow.

Rozkaz — elementarna operacja, ktéra moze wykonac procesor.

Segment — w jezyku Asembler wielko$¢ zawarta w rejestrze segmentowym CS, okre-
§lajaca wraz z zawartoscig rejestru IP (offset) adres logiczny rozkazu zapisywany
w programie jako para SEGMENT:OFFSET.

Stos — rodzaj pamieci tak zorganizowanej, iz dostgp do niej mozliwy jest tylko
z jednej strony. Informacje mozna zapisywac tylko na wierzchotku stosu, od-
czytaé réwniez tylko z wierzchotka. Kazdy zapis informacji na stosie powoduje
zwiekszenie jego zawartosci, kazdy odczyt zmniejszenie jego zawartosci. Po od-
czycie odstaniana jest informacja zapisana na pozycji nizszej na stosle. Informa-
cje odczytywane sg ze stosu w kolejnosci odwrotnej niz byty na nim zapisane;
jako pierwsza bedzie odczytana informacja zapisana ostatnio.

Tablica wektoréw przerwan — tablica zawierajaca adresy wektoréw przerwan (prze-
chowywanych w pamigci w spos6b odwrotny, na przyktad wektor przerwan
54FF00FO nalezy odczyta¢ jako FOO0:FF54, SEGMENT:OFFSET). Tablica we-
ktoréw przerwai umieszczona jest w najnizszym, pierwszym kilobajcie pamigci
od potozenia 0000H do O3FFH.

Tryb adresowania — okreSlanie miejsca, gdzie jest umieszczony adres argumentu
(operandu) rozkazu lub sposéb, w jaki jest on obliczany.

Wektor przerwania — wskaznik do procedury obstugi przerwa. Para stéw w pamicci
zawierajaca przesuniccie (offset) i adres segmentu programu, ktéry ma by¢ wykona-
ny przez procesor, gdy otrzyma on odpowiedni sygnat generowany instrukcja INT.

Asembler - Podrecznik uzytkownika Strona:99

Skorowidz

adres, 101
fizyczny, 11
komérki pamieci, 11 53
logiczny, 11; 12; 101
obliczanie, 23; 24

adresacja rejestrowa, 58

adresowanie pamieci, 9; 13
bezposrednie, 59; 61
natychmiastowe, 58
poprzez rejestr, 57
posrednie poprzez rejestr, 60; 61

akumulator, 18
architektura komputera, 8
argument, 57

ASCIL, 77

asemblacja, 24

Asembler, 7; 101
historia, 7
pisownia, 36
konstruowanie programéw, 51
powstawanie i rozwdj jezyka, 8

ASM, 57

ASSUME, 63

bajt, 12; 101

BIOS, 14; 27, 65; 101
CMQOS, 33; 101
COM, 54; 103

CPU, 14

CRF, 54
deésemblacja, 8; 101

DEBUG, 35
mozliwosci, 48

Asembler - Podrecznik uzytkownika Strona:100

polecenia, 35
proste programy, 44

debugger, 35
deskryptor segmentu, 12
DMA, 32

dodawanie
binarne, 90
szesnastkowe, 90

DOS, 27
dwukropek, 56
dwustowa, 12
dyrektywa, 54; 63
edytor, 54

END, 63

ENDS, 63

etykieta, 56

EXE, 54; 103

flaga, 26; 41
FLLAGS, 26

format rozkazu, 52
funkcje BIOS, 27; 30
funkcje DOS, 27
HMA, 12

ICA, 101

IN, 14; 19; 30

INT, 15

jednostka centralna, 14
jezyk maszynowy, 9
kanat DMA, 32

klawiatura, 33

106

Asembler. Poradnik uzytkownika

kod
ASCIL 51; 77
operacji, 52
programu, 25
rozkazu, 52
wynikowy, 8
Zrodiowy, 8

komentarze, 54; 55

komunikaty bledéw, 43
konfiguracja komputera, 33
konsolidacjz;, 24

konsolidator, 54

krokowa realizacja programu, 41
kropka, 56

kursor, 47

LIB, 54

liczba
dwéjkowa, 89
dziesi¢tna, 89
szesnastkowa, 90

licznik, 19
czasu, 32
rozkazow, 53

LINK, 62

linker, 54

linkowanie, 54

lista
odwolan, 54
rozkazéw, 91; 102

lokalizacja w pamieci, 19
LOOP, 19

LST,54

faiicuch znakowy, 21
MAP, 54

MASM, 62

megabajt, 9

mnemonik, 8; 36; 57; 102

Asembler - Podrecznik uzytkownika

modele pamigci, 102
nazwa etykiety, 56
nazwy symboliczne, 8
NMI, 15
OBJ, 54
offset, 11; 102
operacje arytmetyczne, 18
operand, 57
ORG, 63
OUT, 14; 19; 30
pamieé, 9; 102
podzial na segmenty, 11
wysoka, 12

plik biblioteczny, 54
poczworne stowa, 12
pola instrukcji, 55

pole
adresu argumentu, 52
argumentow, 57
etykiety, 55; 56
kodu operacji, 52
komentarza, 55; 57
mnemontka, 57
operacji, 55; 57
operandéw, 55

polecenie
A, 36
asembluj, 36
C, 37
D, 37
dezasembluj, 42
E, 37
F, 38
G, 38
H, 38
hex, 38
L, 39
idZ do, 38
L, 39

Strona:101

Skorowidz 107
M, 39 BIOS, 27
N, 40 INT 10H, 69
nazwa, 40 INT21H,71
0, 40 kategorie, 14

pordwnaj, 37
przenies, 39

niemaskowalne, 15
programowe, 15

Q, 40 sprz¢towe, 27
R,. 36; 4:)0 przesylanie danych, 32
rejestr,
S, 41 PSP, 104
szukaj, 41 punkt kontrolny, 38
sledz, 41 pushing, 21
T, 41 RAM, 14
U, 42 raport asemblacji, 54
W, 42
wprowadz, 37; 39 REF, 54
wykonaj, 38 rejestr, 11; 17; 104
wypetnij, 38 AX, 18
wyprowadz, 40 BP, 21
XA, 43 BX, 19
XD, 43 CS,25
XM, 43 CX, 19
XS, 43 DI, 20
zakoncz, 40 DS, 25
zakres, 42 DX, 19
zataduj, 39 ES. 25
zrzué, 37 flagowy, 26
i) indeksowy, 20
popping, 21 IP. 26 y
port, 13; 102 powszechnego zastosowania, 18
procesor, 9 segmentowy, 11; 22; 24
rozkazy, 8 segmentu stosu, 21
program SL, 20
maszynowy, 54 SP, 21
obstugi, 14 §§,25
rezydentny, 103 wskaznikowy, 12; 20
uruchomieniowy, 35 znacznikéw, 26
wynikowy, 103 ROM, 14; 27, 30
Zrédtowy, 24; 54; 103 ROM-BIOS, 27
przechowywanie odwrotne, 9; 12; 104 rozkaz, 104
przemieszczenie, 12 I/O, 13
przerwania, 14; 65; 104 koprocesora, 97

Asembler - Podrecznik uzytkownika Strona:102

108

Asembler. Poradnik uzytkownika

taficuchowy, 20; 25
SEGMENT, 63; 104

segment
danych, 25
dodatkowy, 25
pamigci, 11
stosu, 21; 25
segmentacja pamig¢ci, 22
selektor segmentu, 12
stfowa, 12
spacja, 56

sterownik
DMA, 32
przerwan 8259, 31

stos, 21; 25; 104
system operacyjny, 14
szyna adresowa, 12
Srednik, 36; 57

tablica
lokalna, 12
wektoréw przerwan, 65; 104

TASM, 62
TLINK, 62
translatdi‘, 7; 36; 101

tryb adresowania, 53; 57; 104
bezposredniego, 59

Asembler - Podrecznik uzytkownika

Strona:103

indeksowanego bezposrednio, 61
natychmiastowego, 58
posredniego poprzez rejestr, 60; 61

tryb wirtualny, 12
Turbo Asembler, 24
UART 16450, 32
uchwyt pliku, 73

uktad
8048(8049), 33
MC14818, 33

urzadzenia wejécia/wyjscia, 13; 32
wektor przerwania, 15; 104
Windows, 27

wskaznik
adreséw, 19
pamig¢ci, 20
rozkazow, 26
stosu, 21

zakresy liczb, 59

zapis heksadecymalny, 11
zapis szesnastkowy, 11
zawartos¢ rejestru, 36
znacznik, 26; 41

znak podkreslenia, 56
znak tabulacji, 57

