
Filtrowanie stateful–inspection
w Linuksie i BSD

Paweł Krawczyk

6 lipca 2001

Spis treści

1 Wstęp 3

2 Filtry pakietowe 3

3 Filtry stateful–inspection 4

4 Filtry w systemach operacyjnych 4

4.1 Linux . 4

4.2 BSD . 5

4.3 Inne . 5

5 Linux 5

5.1 Wymagania . 5

5.2 Podstawy . 5

5.3 Najprostsza konfiguracja dla stacji roboczej 6

5.3.1 O module state . 6

5.3.2 Inne cechy modułu state 7

5.4 Moduł state i FTP . 7

5.5 Stacja robocza a protokół IDENT 8

5.6 Konfiguracja dla serwera . 9

5.6.1 Ping . 9

5.6.2 Dostęp do usług . 10

1

SPIS TREŚCI 2

5.6.3 Inne porty . 10

5.6.4 Moduł unclean . 10

5.7 Konfiguracja routerów . 11

5.8 Dokumentacja . 13

6 BSD 13

6.1 Najprostszy przykład . 14

7 Od autora 14

7.1 Uwagi końcowe . 14

7.2 Zmiany . 15

1 WSTĘP 3

1 Wstęp

Filtry pakietowe są dostępne praktycznie we wszystkich systemach operacyj-
nych. Stanowią podstawę ograniczeń dostępu do lokalnych usług, co przekłada
się bezpośrednio na możliwość rozpoznania i zablokowania prób ataku. Do-
brze administrowana sieć nigdy nie udostępnia na zewnątrz usług, które nie
są niezbędne, nawet jeśli w danej chwili nie są znane żadne dziury w obsłu-
gujących je demonach.

Celem tego artykułu jest przybliżenie użytkownikom Linuksa i systemów z
rodziny BSD stosunkowo nowej i bardzo przydatnej techniki, jaką jest filtro-
wanie stateful–inspection.

2 Filtry pakietowe

Klasyczny filtr pakietowy to zbiór reguł określających co system powinien
zrobić z pakietem przychodzącym z sieci, lub do niej wychodzącym. Filtr jest
sterowany zbiorem reguł, których podstawowymi elementami są wzorce oraz
akcje, mówiące co zrobić z pakietem pasującym do danej reguły. W skład
wzorca mogą wchodzić cechy charakterystyczne dla protokołu IP, takie jak
adres źródłowy i docelowy pakietu, numery portów protokołów TCP i UDP,
rozmaite flagi, typ komunikatu ICMP i inne, w zależności od zaawansowania
i kompletności filtra.

Przetwarzanie tych reguł odbywa się dla każdego pakietu przychodzącego
lub wychodzącego z danego węzła. Pakiet pasujący do określonego w danej
regułce wzorca jest traktowany zgodnie z przypisaną do niego akcją. Z reguły
ogranicza się ona do przepuszczenia lub zablokowania pakietu, z ewentualnym
odesłaniem odpowiedniego komunikatu ICMP.

Klasyczne filtry pakietowe mają jedną charakterystyczną cechę, a mianowicie
ich reguły są całkowicie lub w większości statyczne, to jest raz skonfigurowane
przez administratora działają bez zmian aż do kolejnej jego ingerencji. Po-
dejście takie stwarza nieraz konieczność takiego tworzenia reguł filtra, które
nie implementują wszystkich wynikających z polityki bezpieczeństwa reguł,
wymuszając pozostawienie w filtrze określonych furtek.

Niedoskonałość klasycznych filtrów uniemożliwiają także całkowite zabezpie-
czenie serwera przed skanowaniem portów i innymi atakami, wykorzystują-
cymi cechy protokołów TCP/IP.

3 FILTRY STATEFUL–INSPECTION 4

3 Filtry stateful–inspection

Filtry stateful–inspection stoją o stopień wyżej od tradycyjnych zapór i sku-
tecznie eliminują ich niedogodności. Podstawą ich działania jest bieżące śle-
dzenie i analiza przechodzących przez dany węzeł połączeń, co pozwala na
znacznie skuteczniejsze kontrolowanie ich legalności. Filtr cały czas przecho-
wuje w pamięci informacje na temat aktualnego stanu każdego połączenia,
wiedząc przy tym jakie kolejne stany są dozwolone z punktu widzenia zarówno
protokołu, jak i polityki bezpieczeństwa.

Filtry tego typu pozwalają na określenie możliwości dokonania danego połą-
czenia bez konieczności operowania poszczególnymi stanami protokołu TCP.
Do administratora należy tylko określenie kierunku oraz polityki względem
rozpoczęcia danego połączenia, a filtr automatycznie weryfikuje kolejne etapy
jego nawiązywania i późniejszy przebieg.

Ta ostatnia cecha pozwala również na odrzucanie pakietów, które do danej
sesji nie należą, co w praktyce przekłada się na skuteczne blokowanie prób
skanowania portów lub wprowadzania sfałszowanych pakietów (spoofing).

Przykładowo, klasyczny filtr pakietowy dla przepuszczenia pełnego połącze-
nia TCP do danego serwera potrzebował co najmniej dwóch reguł: wpusz-
czania pakietów do danego adresu i ich wypuszczania na zewnątrz. Rozbudo-
wywanie tej polityki na przykład od kierunek dozwolonych połączeń (czyli z
której strony można je zaczynać) wymagało dalszego rozbudowania listy, na
przykład o określenie że rozpoczynające połączenie pakiety z flagą SYN są
wpuszczane tylko w danym kierunku.

Dla filtra stateful–inspection w tym wypadku wystarczająca jest wyłącznie
jedna reguła, a mianowicie że pakiety z flagą SYN są wpuszczane do serwera
na danym porcie. Pakiety będące częścią połączenia idące w obu kierunkach
będą przepuszczane automatycznie. Równocześnie jednak analogiczne, ale nie
będące częścią dozwolonego połaczenia pakiety zostaną zablokowane.

4 Filtry w systemach operacyjnych

Filtry stateful–inspection są dostępne w chwili obecnej w większości systemów
open–source oraz w części produktów komercyjnych.

4.1 Linux

Linux przeszedł do tej pory przez trzy wersje filtra pakietowego. W kernelach
do 2.0 był to ipfw, następnie ipchains w 2.2 oraz iptables w kernelach 2.4.
Tylko ostatni z nich jest filtrem stateful–inspection, działa jednak skutecznie
i stabilnie.

5 LINUX 5

4.2 BSD

We FreeBSD są dostępne dwa filtry pakietowe: ipfirewall/ipfw oraz ipfilter/ipf,
w OpenBSD i NetBSD tylko ten ostatni. W ostatnich wersjach oba te filtry
posiadają funkcję śledzenia połączeń, przy czym ipf zdecydowanie wyróżnia
się elastycznością konfiguracji i dojrzałością.

4.3 Inne

Filtry stateful–inspection są również spotykane w produktach komercyjnych. I
tak, popularny Cisco IOS posiada tę funkcję pod nazwą Context Based Access
Control (CBAC). Filtrem tego typu jest również CheckPoint FireWall–1.

5 Linux

5.1 Wymagania

• Kernel 2.4.x, nie wiem które dystrybucje zawierają go domyślnie. Sam
kompiluję ze źródeł.

• Program iptables, dostępny w źródłach na stronie iptables lub jako pa-
kiet dla poszczególnych dystrybucji.

Użytkownicy Debiana mogą doinstalować kernel wraz z koniecznymi narzę-
dziami z deb http://people.debian.org/~bunk/debian potato main.

Jeśli konfigurujemy kernel samodzielnie, to istotne są następujące opcje w
menu Networking options:

• Network packet filtering (replaces ipchains)

• IP: Netfilter Configuration, menu w którym należy wszystkie (oprócz
jednej) pozycje zaznaczyć jako moduły (M)

• IP tables support (required for filtering/masq/NAT) warto na-
tomiast wkompilować na stałe, bo kernel nie potrafi sam załadować tego
modułu.

5.2 Podstawy

Konfiguracja iptables odbiega nieco od znanego z wcześniejszych wersji ip-
chains, głównie dlatego że nowy filtr jest w dużej mierze modularny. Opcje,
które kiedyś były stałymi parametrami programu ipchains są obecnie reali-
zowane przez poszczególne moduły. Do poprawnego działania potrzebne są

http://iptables.samba.org/

5 LINUX 6

odpowiednie moduły, wkompilowane w kernel 2.4 oraz program iptables, słu-
żący do konfiguracji filtra.

Filozofii nowego filtra jest dość podobna — mamy tutaj także trzy domyślne
zestawy reguł INPUT, FORWARD i OUTPUT oraz szereg celów (targets),
które określają co należy zrobić z pakietem pasującym do danej regułki. Naj-
częściej używane to ACCEPT, DROP (zablokowanie pakietu bez powiado-
mienia nadawcy) oraz REJECT (zablokowanie ze zwróceniem komunikatu
ICMP).

5.3 Najprostsza konfiguracja dla stacji roboczej

Funkcja śledzenia połączeń jest w iptables realizowana przez moduł state.
Najprostsza konfiguracja, która realizować będzie takie filtrowanie i użyteczna
na przykład na stacji roboczej, która nie udostępnia żadnych usług, wygląda
tak:

iptables -F

iptables -A INPUT -i lo -j ACCEPT

iptables -A INPUT -p tcp -j ACCEPT -m state --state ESTABLISHED
iptables -A INPUT -p udp -j ACCEPT -m state --state ESTABLISHED
iptables -A INPUT -p icmp -j ACCEPT -m state --state ESTABLISHED

iptables -A INPUT -j LOG -m limit --limit 10/hour
iptables -A INPUT -j DROP

Konfiguracja ta składa się z następujących fragmentów:

1. Usunięcie wszystkich reguł filtra.

2. Dodanie reguły wpuszczającej wszystko na interfejsie lokalnym lo.

3. Dodanie do tablicy INPUT reguł wpuszczających pakiety należące do
już nawiązanych (ESTABLISHED) połączeń.

4. Dodanie, na końcu, dwóch reguł blokujących. Pierwsza tak na prawdę
tylko loguje pakiety, które nie zostały wpuszczone przez poprzednie re-
guły. Druga faktycznie je blokuje.

5.3.1 O module state

Kluczowe w tym wypadku są regułki korzystające z modułu state. Osta-
teczny zezultat ich zastosowania jest taki, że wszystkie połączenia wycho-
dzące będą działać bez ograniczeń (ponieważ nie skonfigurowaliśmy ograni-

5 LINUX 7

czeń w tablicy OUTPUT), a wszystkie połączenia przychodzące będą blo-
kowan. Każde takie połączenie będzie jednak zapamiętywane i należące do
niego pakiety powracające będą automatycznie przepuszczane przez tablicę
INPUT. Równocześnie filtr stateful–inspection wykryje także pakiety nie pa-
sujące do zapamiętanych połączeń i zasygnalizuje ich wyblokowanie. Mogą to
być na przykład pakiety przysłane podczas próby spoofingu lub skanowania
zaawansowanymi technikami, takimi jak ACK scanning.

Zastosowanie celu DROP dla wyblokowanych pakietów będzie dodatkowym
utrudnieniem dla skanującego wszystkie porty na danej maszynie, ponieważ
brak typowej odpowiedzi (ICMP Port unreachable lub ICMP Packet filtered)
spowoduje, że skaner będzie musiał czekać przez ustalony czas, zanim uzna
taki port za nieaktywny.

5.3.2 Inne cechy modułu state

Dodajmy, że stan ESTABLISHED nie odnosi się tylko do TCP, który jest pro-
tokołem połączeniowym i łatwo stwierdzić czy połączenie jest nawiązane, czy
nie. Dokumentacja filtru definiuje ten stan jako odnoszący się do „połączeń,
które wymieniły pakiety w obu kierunkach”. Stąd możliwe jest zastosowanie
tej flagi do protokołów takich jak UDP i ICMP.

Moduł state zna również inne stany połączeń. Są to:

• NEW — pakiety inicjujące nowe połączenie (lub przesyłane tylko w
jednym kierunku)

• RELATED — pakiety nie należące bezpośrednio, ale związane w inny
sposób ze znaną sesją; przykładem mogą być tutaj kanały danych w
FTP lub błędy zwracane po ICMP 1INVALID — pakiety nie związane
z żadną zapamiętaną sesją

5.4 Moduł state i FTP

Komentarza wymaga funkcja RELATED, która faktycznie rozszerza właści-
wości filtra warstwy trzeciej (IP, ICMP) i czwartej (TCP, UDP) o zdolność
rozumienia i reagowania na stany protokołów wyższych warstw. Najprościej
przedstawić to na przykładzie protokołu FTP, który od zawsze był zmorą
osób projektujących filtry pakietowe.

Protokół ten wykorzystuje stałe połączenie na port 21 serwera do wydawania
komend, natomiast samo przesyłanie plików działa w dwóch trybach:

1

•

5 LINUX 8

• W trybie aktywnym (PORT mode) klient otwiera po swojej stronie jakiś
wysoki port i podaje serwerowi jego numer. Serwer wykonuje na ten port
połączenie i przesyła dane.

• W trybie pasywnym (passive mode) to serwer otwiera wysoki port, a
klient nawiązuje na niego połączenie otrzymując dane.

Jak się łatwo domyślić, trybu aktywnego nie będziemy w stanie używać zza
maskarady, ponieważ serwer FTP nie będzie w stanie połączyć się z naszym
hostem, ukrytym za routerem realizującym NAT.2

Tryb pasywny również nie jest rozwiązaniem idealnym, ponieważ musimy
zezwolić klientowi z sieci wewnętrznej na wykonywanie praktycznie dowolnych
połączeń na zewnątrz3.

Z pomocą przychodzi nam tutaj funkcja RELATED, która wypuści na ze-
wnątrz połączenia na określony wysoki port tylko wtedy, kiedy żądanie jego
otwarcia zostało jawnie wydane podczas sesji FTP. W tym celu router musi
śledzić każde przechodzące przez niego połączenia FTP i szukać w nich ko-
mend, otwierających porty pasywne. Jeśli takie znajdzie, zapamiętuje ten
fakt na potrzeby regułki RELATED.

Dla każdego protokołu wyższej warstwy musimy załadować odpowiedni mo-
duł interpretujący. W przypadku FTP jest to moduł ip conntrack ftp, do-
stępny w standardowej dystrybucji kernela (drugi to ip conntrack irc. W sieci
można również znaleźć moduły do innych protokołów. Należy pamiętać, że
moduły te nie są ładowane automatycznie — trzeba je załadować jawnie za
pomocą poleceń insmod albo modprobe.

5.5 Stacja robocza a protokół IDENT

Powyższa konfiguracja jest skuteczna, ma jednak jedną wadę, która wyjdzie
na jaw prędzej czy później. Otóż łącząc się z tak skonfigurowanego hosta z nie-
którymi serwerami FTP zauważymy, że występuje kilkudziesięciosekundowe
opóźnienie pomiędzy nawiązaniem połączenia, a zalogowaniem do serwera.

Wynika to stąd, że duża liczba serwerów FTP (i nie tylko) próbuje uzyskać
od klienta informacje o użytkowniku po protokole IDENT, próbując nawiązać
zwrotne połączenie na port 113, przypisany do tej usługi. Ponieważ nasz host
nie akceptuje żadnych połączeń przychodzących i nie odrzuca ich w jawny
sposób, serwer FTP wpuści nas dopiero po przekroczeniu czasu oczekiwania
z usługą IDENT.

2Chyba, że załadujemy moduł ip nat ftp, który będzie oszukiwał nasz router i przekazy-
wał połączenia do środka.

3Większość serwerów FTP otwiera porty pasywne z pewnego określonego przedziału.
Można więc obejść ten problem otwierając tylko ten zakres portów, ale nie jest to rozwią-
żanie eleganckie.

5 LINUX 9

Aby uniknąć tego nieszkodliwej, ale irytującej niedogodności należy spowodo-
wać, by połączenia na port 113 były jawnie odrzucane, dając tym samym do
zrozumienia że nie mamy serwera IDENT. Poprawiona konfiguracja znajduje
się poniżej:

iptables -F

iptables -A INPUT -i lo -j ACCEPT

iptables -A INPUT -p tcp --dst 0/0 --dport 113 \
-j REJECT --reject-with icmp-port-unreachable

iptables -A INPUT -p tcp -j ACCEPT -m state --state ESTABLISHED
iptables -A INPUT -p udp -j ACCEPT -m state --state ESTABLISHED
iptables -A INPUT -p icmp -j ACCEPT -m state --state ESTABLISHED

iptables -A INPUT -j LOG -m limit --limit 10/hour
iptables -A INPUT -j DROP

Wykorzystaliśmy cel REJECT, ze wskazaniem że zwrócony ma być standar-
dowy w takim wypadku komunikat ICMP Port unreachable.

5.6 Konfiguracja dla serwera

O ile stacja robocza może jawić się z zewnątrz jako głuchy bastion, o tyle w
przypadku serwera musimy dopuścić przynajmniej połączenia przychodzące
na wybrane usługi. Konfiguracja komplikuje się jeszcze bardziej (pod wzglę-
dem ilości reguł), jeśli usługi te mają być dostępne tylko z niektórych adresów
i tak dalej.

Tworząc konfigurację filtra możemy oprzeć się o przedstawione wyżej przy-
kłady konfiguracji, dopisując nowe regułki przed ostatnimi dwoma, blokują-
cymi wszystko.

5.6.1 Ping

Pierwszą modyfikacją może być dopuszczenie pakietów ICMP Echo, czyli
popularnego pinga:

iptables -A INPUT -p icmp --icmp-type echo-request -j ACCEPT

Tutaj należy się komentarz — o ile część administratorów blokuje tę usługę,
o tyle ja sam jestem zdania że jest to polityka przynosząca więcej szkody niż
pożytku i nie przyczyniająca się w znaczący sposób do poprawienia bezpie-
czeństwa serwera. Tymczasem ping przydaje się po prostu do stwierdzania,
czy serwer działa i jak długo wędrują do niego pakiety.

5 LINUX 10

5.6.2 Dostęp do usług

Kolejnym krokiem jest wpuszczenie połączeń na te serwisy, które mają być
dostępne. W poniższym przykładzie publicznie (zewsząd) dostępne są ser-
wery SMTP (port 25) oraz WWW (80). Serwer SSH (22) jest dostępny tylko
z adresu 192.168.13.2. Przed tym wszystkim jednak blokujemy wszystkie po-
łączenia z sieci 195.116.130.0/24, ponieważ podejrzewamy jej właścicieli o
wysyłanie spamu.

iptables -A INPUT -p tcp -s 195.116.130.0/24 -j DROP
iptables -A INPUT -p tcp -d 0/0 --dport 25 -j ACCEPT
iptables -A INPUT -p tcp -d 0/0 --dport 80 -j ACCEPT
iptables -A INPUT -p tcp -s 192.168.13.2/32 -d 0/0 --dport 22 -j ACCEPT

Zamiast numerów portów można używać oczywiście nazw z pliku /etc/services,
czyli odpowiednio smtp, www i ssh. Przyczyni się to do poprawienia czytel-
ności takiej konfiguracji, ale w przypadku jej przenoszenia na inną instalację
może spowodować problemy, jeśli plik services nie będzie kompletny.

Warto używać ogólnej specyfikacji adresu docelowego w regułkach, czyli 0/0
(skrócona postać 0.0.0.0/0), choćby ze względu na to że serwer może posiadać
dodatkowe adresy IP, na które również należy nałożyć ograniczenia by cały
filtr był skuteczny. Wyjątkiem od tej reguły są systemy będące równocześnie
routerami, ale o tym napiszemy dalej.

5.6.3 Inne porty

Stosowanie stateful–inspection na serwerze ma jeszcze jedną zaletę, przydatną
szczególnie na serwerach z kontami shell. Otóż taka konfiguracja skutecznie
uniemożliwi użytkownikom uruchamianie własnych demonów, nasłuchujących
na wysokich portach i robiących różne rzeczy, nieraz niepożądane z punktu
widzenia bezpieczeństwa (boty, prywatne proxy itp.).

Nie stanowi przy tym oczywiście żadnego problemu otwarcie wysokich portów
dla użytkowników, którzy tego rzeczywiście potrzebują.

5.6.4 Moduł unclean

Moduł unclean ma za zadanie wyłapywanie pakietów, które są niepoprawne
w różny i trudny do sprecyzowania za pomocą standardowych regułek sposób.
Moduł ten przeprowadza przetwarzanym pakiecie szereg testów, badając jego
zgodność ze standardami, wewnętrzną spójność, poprawność flag i szereg in-
nych cech. Moduł ten należy umieśić na początku listy, na przykład w postaci
poniższych regułek. Pozwoli on wychwycić i zablokować szereg dotychczas

5 LINUX 11

znanych ataków związanych z błędną fragmentacją pakietów i fałszywymi
flagami, a także nowe ataki lub pakiety uszkodzone na łączach.

iptables -A INPUT -j LOG -m limit --limit 10/hour -m unclean
iptables -A INPUT -j DROP -m unclean

5.7 Konfiguracja routerów

W tym przypadku jako router będziemy rozumieć każdy host, który posiada
więcej niż jeden interfejs sieciowy i zajmuje się przesyłaniem pakietów z jednej
sieci do drugiej. Host taki może równocześnie udostępniać rozmaite usługi ze
swojego adresu. Sytuacja taka dodatkowo komplikuje konfigurację i stawia
dodatkowe wymagania w kwestii poprawnego zrozumienia przepływu danych
i zaprojektowania ograniczeń.

Główną różnicą w tym wypadku będzie konieczność operowania nie tylko na
tablicy INPUT, ale i FORWARD, odnoszącej się do każdej sytuacji gdy pod-
legające filtrowaniu pakiety przechodzą pomiędzy różnymi interfejsami. Wy-
maga to z reguły zdublowania konfiguracji moduług state dla tablicy FOR-
WARD oraz określenia dodatkowych reguł dla poszczególnych interfejsów.

Należy także pamiętać, że w przypadku routera tablica INPUT może się
odnosić do każdego interfejsu i konieczne jest uwzględnianie jego nazwy (lub
adresu) w konfiguracji filtra. Nie można już zakładać, że wszystkie dane przy-
chodzą przez jeden interfejs, tak jak w poprzednio rozpatrywanych przypad-
kach. Z tego samego powodu należy rozważnie stosować maski globalne (typu
0/0).

Poniżej znajduje się rozbudowana konfiguracja, oparta o jedną z moich rze-
czywistych instalacji. Zawiera ona praktycznie wszystkie opisane powyżej ele-
menty plus dodatkowe elementy, wymagane w tej konkretnej sytuacji (np.
NAT). Plik ten ma postać skryptu shella i jest po prostu uruchamiany przy
starcie systemu. Komentarze znajdują się w samym skrypcie.

#!/bin/sh

PATH="/sbin:/usr/local/sbin:$PATH"

Ladujemy modul niezbedne dla RELATED
modprobe ip_conntrack_ftp

iptables -F
iptables -F -t nat

Przychodzace IDENT odrzucamy z komunikatem ICMP
iptables -A INPUT -p tcp --dst 0/0 --dport 113 \
-j REJECT --reject-with icmp-port-unreachable

5 LINUX 12

Interfejs lokalny
iptables -A INPUT -i lo -j ACCEPT

Wpuszczamy wszystko z LAN
iptables -A INPUT -i eth1 -s 10.0.0.0/8 -j ACCEPT
iptables -A FORWARD -i eth1 -s 10.0.0.0/8 -j ACCEPT

Polaczenia juz nawiazane
iptables -A INPUT -p tcp -j ACCEPT -m state --state ESTABLISHED
iptables -A INPUT -p tcp -j ACCEPT -m state --state RELATED
iptables -A INPUT -p udp -j ACCEPT -m state --state ESTABLISHED
iptables -A INPUT -p icmp -j ACCEPT -m state --state ESTABLISHED
iptables -A INPUT -p icmp -j ACCEPT -m state --state RELATED
iptables -A FORWARD -p tcp -j ACCEPT -m state --state ESTABLISHED
iptables -A FORWARD -p tcp -j ACCEPT -m state --state RELATED
iptables -A FORWARD -p udp -j ACCEPT -m state --state ESTABLISHED
iptables -A FORWARD -p udp -j ACCEPT -m state --state RELATED
iptables -A FORWARD -p icmp -j ACCEPT -m state --state ESTABLISHED
iptables -A FORWARD -p icmp -j ACCEPT -m state --state RELATED

POP3 z serwera wewnetrznego wystawiony na zewnatrz za pomoca
DNAT (odpowiednik dawnego port-forwarding)
Adres 192.168.13.3 jest adresem zewnetrznym routera, serwer w LAN
ma adres 10.1.1.241
iptables -t nat -A PREROUTING -p tcp -d 192.168.13.3/32 --dport 110 \
-j DNAT --to-destination 10.1.1.241

Wpuszczamy ping
iptables -A INPUT -p icmp --icmp-type echo-request -j ACCEPT

Serwer DNS jest w publicznej sieci 192.168.14.0/24 podpietej na drugiej
karcie sieciowej (stanowiacej DMZ)
iptables -A FORWARD -p udp -d 192.168.14.5 --dport 53 -j ACCEPT
iptables -A FORWARD -p tcp -d 192.168.14.5 --dport 53 -j ACCEPT

iptables -A INPUT -p tcp -d 217.96.88.194 --dport 22 -j ACCEPT

Na routerze tez stoi serwer WWW
iptables -A INPUT -p tcp -d 192.168.13.3 --dport 80 -j ACCEPT

Serwer WWW w DMZ
iptables -A FORWARD -p tcp -d 192.168.14.6 --dport 80 -j ACCEPT

Serwer FTP w DMZ, otwarte porty dla polaczen pasywnych i aktywnych
iptables -A FORWARD -p tcp -d 192.168.14.4 --dport 21 -j ACCEPT
iptables -A FORWARD -p tcp -s 192.168.14.4 --sport 20 -j ACCEPT
iptables -A FORWARD -p tcp -d 192.168.14.4 --dport 40000:44999 -j ACCEPT

Spammerow nie wpuszczamy
iptables -A INPUT -p tcp -s 195.116.130.0/24 -j DROP

Dynamiczny NAT dla adresow z sieci wewnetrznej (maskarada)
iptables -t nat -A POSTROUTING -s 10.1.1.0/24 -j MASQUERADE

6 BSD 13

iptables -A INPUT -j LOG -m limit --limit 10/hour
iptables -A INPUT -j DROP
iptables -A FORWARD -j LOG -m limit --limit 10/hour
iptables -A FORWARD -j DROP

5.8 Dokumentacja

• http://netfilter.samba.org/
Główna strona projektu netfilter/iptables, wraz z kodem źródłowym
oraz podręnikami.

• http://www.boingworld.com/workshops/linux/iptables-tutorial/ „Linux
IPtables tutorial”

• iptables(8)
Strona manuala systemowego poświęcona programowi iptables.

6 BSD

Omawiany tutaj filtr ipfilter (ipf) jest obecny we wszystkich systemach z
rodziny BSD (FreeBSD, NetBSD i OpenBSD. W dwóch ostatnich stanowi
jedyny systemowy filtr pakietów, instalowany domyślnie. Ipf jest także do-
stępny dla innych systemów, np. dla Solarisa. Moim zdaniem jest to jeden z
najlepszych i najelastyczniejszych filtrów pakietowych.

Niestety w maju 2001 pomiędzy autorem, którym jest Darren Reed z Austra-
lii, a twórcami OpenBSD doszło do konfliktu na tle licencji filtra i od kolejnych
wersji tego systemu nie będzie on dostępny natywnie. Nie zmienia to jednak
faktu, że ipf jest dostępny w postaci kodu źródłowego, dzięki czemu można
go zainstalować samodzielnie. Nie zniknie on także z FreeBSD i NetBSD.

Zasadniczą cechą, która wyróżnia ipf od innych filtrów pakietowych jest ko-
lejność przetwarzania reguł. W większości filtrów są one przeglądane kolejno,
od góry do dołu listy i pierwsza, która pasuje jest wykonywana, kończąc tym
samym przetwarzanie listy. W przypadku ipf wygląda to nieco inaczej — za-
wsze przeglądana jest cała lista reguł i ostatnia z nich, która pasowała do
aktualnego pakietu jest wykonywana.

Poniżej opisany przykład ma za zadanie uwypuklenie różnic pomiędzy ipf, a
wcześniej opisywanym iptables. Podstawy teoretyczne działania obu filtrów są
jednak zbliżone, dlatego zwolenników ipf również namawiam do przeczytania
teoretycznych fragmentów rozdziałów poświęconych Linuksowi.

http://netfilter.samba.org/
http://www.boingworld.com/workshops/linux/iptables-tutorial/

7 OD AUTORA 14

6.1 Najprostszy przykład

Interfejsy sieciowe w BSD biorą nazwy od konkretnych modeli kart — poniż-
sze przykłady wykorzystują interfejs fxp0, czyli w rzeczywistości kartę Intel
EtherExpress/100.

FXP0 Internet
block in log on fxp0 from any to any

Zwracamy RST w odpowiedzi na zadania IDENT
block return-rst in quick on fxp0 proto tcp from any \
to any port = 113 flags S/S

Wypuszcamy wszystkie polaczenia wychodzace z "keep state"
pass out quick on fxp0 proto tcp from any to any keep state
pass out quick on fxp0 proto udp from any to any keep state
pass out quick on fxp0 proto icmp from any to any keep state

Widać tutaj zasadniczą różnicę w działaniu filtra ipf, jaką jest brak wyraź-
nego rozróżnienia pomiędzy poszczególnymi kierunkami ruchu, tak jak to
było w przypadku iptables. W powyższym przykładzie blokujemy cały ruch
przychodzący, poza pakietami należącymi do połączeń zainicjowanych z
tego hosta. Są one wpuszczane przez filtr stateful–inspection, włączony flagą
keep state.

Przykłady dla ipf będą rozbudowywane w miarę uzupełniania tego artykułu.

7 Od autora

7.1 Uwagi końcowe

Konfiguracje przedstawione w przykładach nie są kompletne. Mam nadzieję,
że pomogły Ci one zrozumieć działanie filtrów stateful–inspection i będą
punktem wyjścia do tworzenia skutecznych zapór. Najskuteczniejszą w tym
wypadku strategią jest tworzenie konfiguracji maksymalnie restrykcyjnej i
uważne obserwowanie logów systemowych. Każdy zablokowany pakiet należy
przeanalizować i — jeśli okaże się że był on wysyłany legalnie — rozszerzyć
filter o regułę przepuszającą ten rodzaj ruchu.

Zdaję sobie sprawę, że mogłem popełnić w tym artykule błędy, rzeczowe i
inne, w takim wypadku będę wdzięczny za ich wskazanie. Komentarze oraz
uzupełnienia są również mile widziane, znajdą się one w kolejnych wersjach
tego dokumentu.

7 OD AUTORA 15

7.2 Zmiany

• Wersja 0.3 rozdział o RELATED i FTP, zmiana adresu strony netfilter
i nowe adresy, opis konfiguracji oprogramowani

• Wersja 0.2 opis modułu unclean

• Wersja 0.1 pierwsza wersja tego artykułu

Nowe wersje tego dokumentu dostępne są pod adresem
http://ipsec.pl/

Paweł Krawczyk ABA sp. z o.o.
kravietz@aba.krakow.pl ul. Bociana 6

31-231 Kraków

http://ipsec.pl/

	Wstep
	Filtry pakietowe
	Filtry stateful--inspection
	Filtry w systemach operacyjnych
	Linux
	BSD
	Inne

	Linux
	Wymagania
	Podstawy
	Najprostsza konfiguracja dla stacji roboczej
	O module state
	Inne cechy modulu state

	Modul state i FTP
	Stacja robocza a protokól IDENT
	Konfiguracja dla serwera
	Ping
	Dostep do uslug
	Inne porty
	Modul unclean

	Konfiguracja routerów
	Dokumentacja

	BSD
	Najprostszy przyklad

	Od autora
	Uwagi koncowe
	Zmiany

