heliomn
GEL. J A

\% ~ KATALOG KSIAZEK

* ZAMOW DRUKOWANY KATALOG
~ INAJDZ KSIAZKE

T

. LISTA'BESTSELLEROW

y ~ CENNIK TINFORMACJE

" ZAMOW INFORMACJE
0 NOWOSCIACH
= ZAVMIGW CENNIK

INFORMACUE.
0 WYDAWNICTWIE HELION

CPRAGVENTY KSIAZE

Wydawnictwo Helion
ul. Chopina 6

44-100 Gliwice

tel. (32)230-98-63
e-mail: helion@nhelion.pl

FEF | ER] b

Hack Wars. Tom 1.
Na tropie hakerow

Autor: John Chirillo

Ttumaczenie: Pawet Koronkiewicz, Leonard Milcin
ISBN: 83-7197-599-6

Tytut oryginatu: Hack Attacks Revealed: A Complete
Reference with Custom Security Hacking Toolkit
Format: B5, stron: 736

Zawiera CD-ROM

Ekspert w dziedzinie zabezpieczen, John Chirillo, zacheca Czytelnika do poznania
mrocznego i tajemniczego Swiata hakerdw. Czerpiac z bogatego do$wiadczenia we
wspotpracy z firmami Fortune 1000, Chirillo przedstawia rdzne sposoby wykorzystania
przez hakeréw luk w zabezpieczeniach sieci oraz metody rozpoznawania tego rodzaju
zagrozen. Uzupetnieniem jest szczegGtowy opis pakietu TigerBox, umozliwiajacego
hakerom przeprowadzanie skutecznych wtaman, a administratorowi sieci — zyskanie
pewnosci, Ze jest wtasciwie chroniona.

W tej prowokacyjnej ksigzce znajdziemy:

¢ QOpis protokotow sieciowych i technologii komunikacyjnych z punktu widzenia
hakera

¢ Petny opis stosowanych metod wtaman, wyjasniajacy, jak dziatajg hakerzy,
crackerzy, "phreaks" i cyberpunki

e Narzedzia do gromadzenia informacji i skanowania sieci, umozliwiajace wykrycie
i przeanalizowanie przypadkéw naruszenia bezpieczenstwa systemu

e Doktadne instrukcje, jak postugiwac sie pakietem typu TigerBox
i wykorzystywac go do wykrywania atakdow.

http://helion.pl/view254w
http://helion.pl/page254w~zamow_katalog.htm
http://helion.pl/page254w~katalog.htm
http://helion.pl/add254w~hacwa1
http://helion.pl/page254w~emaile.cgi
http://helion.pl/page254w~cennik.htm
http://helion.pl/page254w~online.htm
mailto:helion@helion.pl
http://www.amazon.com/exec/obidos/ASIN/047141624X
http://helion.pl/view254w~hacwa1
http://www.amazon.com/exec/obidos/ASIN/047141624X
http://helion.pl/page254w~searchdv.fcgi
http://helion.pl/page254w~top.htm
http://helion.pl/page254w~owyd.fcgi

Spis tresci

Rozdziat 1.

Rozdziat 2.

Protokoty kKomunikacyjneccecevciciciicircrcsressesressessessessessessensesses 15
Krotka historia Internetu
IP — Internet Protocol
Datagramy I[P — transportowanie, rozmiar i fragmentacja..........cccceceeveereereerenennenne. 18
Adresy IP, klasy i maski podsieci .
VLSM — krétka instrukcja tworzenia podsieci i odczytywania adresu IP 22
ARP/RARP — rozpoznawanie adresu SPrzetoWeZ0......cueverververrerrereeeereereersessessessesennes
ARP — transportowanie, budowa nagtéwka pakietu....
RARP — transportowanie, dokonywanie transakcjicceeveeeeercvereerienienenesesennnas
USTuga RARP ...ttt
TCP — Transmission Control Protocol
Sekwencje oraz okna...........ccceeuenneee.
Budowa nagtowka pakietu TCP....................
Porty, koficéwki, nawiazywanie potaczenia.
UDP — User Datagram Protocol.............cccceueneee.
Budowa i transportowanie datagraméw UDP......
Multiplexing, demultiplexing oraz porty UDP
ICMP — Internet Control Message Protocol......
Budowa i transportowanie pakietow ICMP............
Komunikaty ICMP, wyszukiwanie maski podSi€ci.........ccoererereriinienienienienenennenne.
Przyktady datagramOw ICMP.........cccooiiiiiiiiniiiiieieeeeeeeee e

NetWare oraz NetBIOSccomrmmiimmmimmimeinenres e nasans

NetWare — wprowadzenieccceeveereencnen.
IPX — Internetwork Packet Exchange
SPX — Sequenced Packet Exchange
Budowa i przyktady naglowkow SPXccccoviiiiiiiniineeeeeeeee e
Zarzadzanie polaczeniami, PrZeryWAaNICccecueveriererrerierierierienieeeeeeeesessessessessesnes 49
Algorytm Watchdog
Korekcja btedéw, ochrona przed zatorami

NetBIOS — WPIOWAAZENIE.eveuieiiieiieiiieierie ettt
Konwencje nazywania, przyktadowe nagtowki...
Ushugi NetBIOS ..ottt

Hack Wars. Na tropie hakerow

Rozdziat 3.

Rozdziat 4.

Rozdziat 5.

NetBEUI — wprowadzenie53
Zwiazki z NetBIOS........ .54
OKNA 1 HCZNTKI .ttt 54

Porty standardowe oraz zwigzane z nimi USHIgi.......ccceeevreerrenrmerneenens 55

Przeglad POTtOW......cveiiieieieciiceeee ettt .55
Porty TCP 0raz UDP......coouvoieiiieiieeeeeeeeeeeee e56
Luki w bezpieczenstwie zwigzane z portami standardowymi...... .57

NiezidentyfIKOWane USTUGI......cecieieieieieierieresieseetet ettt eee e e s e s e sreseesre e 69

Techniki rozpoznania i skanowaniac..ccoceimiviicirnrirs s srs e reaenas 99

ROZPOZNANIEcveieieiieiieieiesteeeetee ettt ettt te ettt e st e st e s seeseeneeseesaessensensesseeseeseenes 99
Katalog Whois100
PING ettt ettt b ettt sttt eeae 102
SErWiSy WYSZUKIWAWCZEeveuieienieuirieieierieteteeeteeeeeeteste s te ettt ebe e s sse e ese s ene s 105
Social ENGINEETING ..c..eoutiiiiiiiiiitietieieeteeteete ettt 106

SKANOWANIE POTEOW ...enveuvititienienteieiesteste et et et et et esteste st sbesbe e st est et etebenbesbesbesbeeneensenes 107
Techniki SKANOWANIA POTEOWccuevuiriiriiriiiieieieiete ettt eeeeeene 107
Popularne skanery POrtOW.........ccueeveeirieieieieieieniesie ettt este e ste e neeneeneas 108

PrzyKtadowWy SKaNcccveiiieiiiiciececeee ettt st eee e ennens 120

Niezbednik hakera..........ccovmerrmemrmrrcsrnesrmssressrmsrsessnsssmssrmsssmsssmsssnssens

P0jecia ZWIQZANE Z SIECIA ..vevververerrireieeienieieieiestestesteereseeesensensessessessessessens
Model warstwowy — Open Systems Interconnection Model................

Rodzaje okablowania — przepustowos¢ oraz maksymalna dtugosé
Konwersje pomigdzy postaciami dwojkowymi, dziesiatkowymi

1 52€SNaStkOWYMI LICZDouveiiiiiiiic e 129
Funkcje wydajno$ciowe protoKOIOWccecvevierinininininieiceeeeececeee 140

TEChNOIOZIE SIECIOWEcueiueeuieieiesteetceteeit ettt sttt ettt st sbe b ebeeneene 141
Adresowanie MAC 1 kody producentowcceeeeereeerereenienienienieneseseeeeeeneen 141
BAROINOT ...ttt ettt
Token Ring .
Sieci Token Ring i mostkowanie trasy Nadawcycccceeeeeerverienienreseseeeeeeseneenns 149
Sieci Token Ring i translacyjne mostkowanie trasy nadawcy..........cccceoeveerueennene 153
S1ECT FDDI ...ttt

Protokoly wybierania tras
Protokoly wektorowo-odlegto$ciowe i protokoty stanéw przytaczy.........cceeeeuene. 157
Protokot RIP
ProtokOT IGRP ..ottt 160
Protokot RTMP sieci Appletalk.........coieieiecieierieieieeieeeeeeeeeeeeesee e 161
Protokot OSPF

WQAZNE POLECEIIA ...ttt ettt ettt ettt b ettt se b et seneeneeean
APPEI 1.ttt b et a et e a et e n et et bt et e st et et s s ene e
assign......

attrib ...
backup.
break....

chdir (cd)....
chkdsk

Spis tresci

QISKCOMP ..ttt ettt e b et et eese e st e s e s e s esbassassessasseesaeneans 173
diskcopy .
EXE2DIN ettt b ettt n e ne e

PIOIMPE .ttt etttk t et et e e s et e st et e e es e b es e be st eseeseneesanseseeseneesenseseaseneesenseneas
TECOVET ..t euveureereereereeseeseeseeseessesseeseeseeseeseeseesseasessensassaseeseessessessessensessesesseaseeseessensensn
TENAIME (T€11) ..uviuvvetieitieeteeieesteeereesseeseesseeseessesssasseesssesseesseesseeseeseesseesseesseessesssesssens 190
TEPLACE «..veeteeeteete ettt ettt ettt ettt sttt s ettt et et e st e et e ete e et e st et e tebenbeeteeneeneeneennan 190
restore

rmdir (rd)

select

WETSJE JEZYKA € ittt ettt ettt st sttt aean

Klasyfikowanie jezyka C .
SrUKLUra JEZYKA C..vovveneiiieiieeieeeee ettt ettt sttt ettt e b e be b e ebeeneeneennenes
KOMENTAIZE ...
Biblioteki.......ccccoeeuee
Tworzenie programow
Kompilacja..................
Typy danych..
OPCIALOTY ..uvenventitietieteetieitet e et e steste s bt e bt ebt e st es b et e be st e sbeebeebeesteatansenbenbanbesbeseesbeeseeneans

Hack Wars. Na tropie hakerow

Rozdziat 7.

Funkcje......ccooeveenccncnncnee
Polecenia preprocesora C
INSIUKCIE SEEIUJACE .veveevievierreieieriesieeiesteeteeeentetestessessesseeseeseensensensensesensessessessanseens
W EJSCIC-WYTSCIC veuvererieeieeeeerieiestestesteeteeseestestessessesessessaesessaessessensessensessesseesaeseeseeseen
Wskazniki

Obstuga btedow
Konwersja typOw zZmiennych..........ocoiiiiiiiiiiieieeeeee e 263
PO Ty P ettt bbbttt ettt bbbttt ean 265
Wskazniki do funkcji ..
STZEOT ..ttt et ettt 267
PIZEIWANIA.oeiiiiiiiiicic ettt ettt st 267
FUnKeja SIZNAL0) cveeveeveeieieieieiesieceste ettt ettt te st see e e s e s e aesbessesaeeseeneeneennen 270
Dynamiczne aloKOWanie Pami@Cicouevvrueruerirueiererieiinienierereeneseeeere et seeneene 271
FUNKC]A @EEXIE() 1-vreveneeteneenitenietet et ettt ettt ettt ettt ettt eene 273
WYAAJIIOSE. ...ttt ettt b ettt e 274
Przeszukiwanie KatalogOwc..coereririnirieieieieiesesteseeeet ettt 275
Dostep do pamigCi TOZBUAOWANE]ecverveevieuieiieieieienieeieeie ettt 278
Dostep dO PAMIGCT TOZSZETZOMNE]euvervieirieuierieiienietentestesiesieeatensentessensessessessesneeneas 282
Tworzenie programow TSRocvviiiiiiieieieeeeteeee ettt 290
Metody przeprowadzania atakowc.ccceeeerrmerrcrrermssrmssrerresrnnsrnns 319
Streszezenie PrZyPAdKU.......cceeieiiieieeeee ettt 319

» TyIne wejscia’™ (DACKAOOTS) . cvieuirieieieierieeieseetetete ettt st ene 320
Zaktadanie ,,tyINeZO WEJSCIA™ ...cvevveriirieriierieieieieiet et eteete et sae e ssesaeeseeneas 322
Typowe techniki ,,tyINeZo WEJSCIA™icvievieieiereieieriestesesteee ettt essessesresresreeseens 323

FAIY PAKICLOW ...ttt ettt sttt eene 323

FlLIY STANOWE. ...ttt ettt ettt ettt ettt b et eb e e e e sbe e ebeneenea 328

Bramy proxy i poziomu aplikacjiccceeereeieieiienienieneneneeeeeeee e 333
Przeciazanie (fIOOAINE)ccoueruerierieninieiieieitetetet ettt st

Zacieranie $ladéw (log bashing)
Zacieranie $ladow aktyWwnoS$ci ONlINEceeveieierienienieneneeeeeeeeteie e
Unikanie rejestrowania WeiSniee KIAWISZYceveverierienieneninieeeieieiesesvese e

Bomby pocztowe, spam i podrabianie korespondencji.

Lamanie hasel (password cracking)c.ccoeoeveeirieneinieineeeeeee e
Deszyfrowanie i KTaKOWANIE........c.eceeeeeeeeieieieieiesteseeteeeee et eaesessessesreseeeseesaesaens

Zdalne przejecie kontroli
Krok 1. ROZPOZNANIEcoueemieniiiiiiieiiieieeitete ettt
Krok 2. Przyjazna wiadomos$¢ emailccceeeeierienienenineneeieteeienee e
Krok 3. Kolejna ofiara

Monitorowanie komunikacji (SNiffing)ccecvevverieriereninirieieieeeee e

Podrabianie IP i DNS (SPOOTING) ...ecveevieieieieieieiesiesieeeeceeetee et ste e see e seesseeneeneens
Studium przypadku..................

Konie trojanskie

Infekcje wirusowe.......

Wardialing.......coceeeveeienienienininircncececee

»Ztamanie” strony WWW (Web page hack)........cccoceevieieiinininieiiccieeneseseeeeee

Spis tresci

Krok 1. ROZPOZNANIEcouveuienieniiiiiieiieieeceieee ettt ettt ettt eneenean 394
Krok 2. Uszczegotowienie danychcccecvecieierieniininininieieeeieseceeeeeeeene 394
Krok 3. Rozpoczgcie Wlasciwego atakllccvecveierierieninineneeieeeieesie e 397
Krok 4. POSZErzenic Wy OMUceceeieieieiieieieniesieseeesieeeeseseesaessesae e eseeseeseennes 397
Krok 5. ,,HaKOWanie” StrONY.........ccceeuririeireiriinieierieieiesie sttt eene e 397

Rozdziat 8. Bramy, routery oraz demony ustug internetowych..........ccccceeumnuennes 401

Rozdziat 9.

Rozdziat 10.

Rozdziat 11.

Bramy i routery ...

Demony serwerdéw internetowych

INOTERL/BAY ..ottt ettt sttt et ettt et beebeeseeaeeneenes

APACHE HTTP .ottt sttt sttt et et ettt eneennen
LOtUS DOIMINO ...ttt ettt ettt ete e eaeeereeereeeneennas
Microsoft Internet Information Server...
Netscape ENterpriSe SEIVETcouivirireriririeteteietestesee ettt
INOVEIL WED SEIVET ..ottt ettt e e te e et e eeaaaea

Solaris

Serwery proxy i zapory firewall..........ccoverreirrimirmr e ———.
Bramy migdzysieciowe

BOTAEIrWATE.....c..oiviiiieiieeece ettt e ve et et be e aneenne e
FITEWALL-T ..ot ettt et et teeteebeeaseeaneeane e
Gauntlet
INEESCIEEI ...ttt et e et e et e e e aae e ebee e teeeeaseeebesensneeanns

TigerSuite — kompletny pakiet narzedzi do badania i ochrony sieci ...605
TEIMINOLOZIA ...ttt ettt ettt st st b sbeebeeneene 605
WPTOWAAZEIL. ... ettt ettt ettt sttt et ettt sbesbesbesbeebeeneens 607

INSEALACTA ..ottt ettt se e ebe e neene 610
Moduly ...c.ooveiiiiiiniinicce ..613

Moduty grupy System Status... ..614
TIEIBOX TOOKIL ... ceuieuieuieieieietietiete ettt ettt ettt e sbesteete e e e e eseessessessessessessassesseesnennans 619

TAZEIBOX TOOIS ...ttt 619
TAZErBOX SCANMNEIScviuieeiieiiiteieieteeete ettt ettt sttt ee 624

Hack Wars. Na tropie hakerow

Dodatek A
Dodatek B
Dodatek C
Dodatek D
Dodatek E

Skorowidz..

TigErBOX PENELIAtOrScoviveiiieiiiiiieiericiriete ettt e
TigerBox Simulators..........ccccc....

Przyktadowy scenariusz wlamania
Krok 1. Badanie celu......
Krok 2. Rozpoznanie
Krok 3. Socjotechnika....
Krok 4. Atak..........c.......

Podsumowanie

Klasy adresow IP oraz podziat na podsi€Ci......c.c.ccermurimnrncireciiennieannes 637
Porty standardowe...........cocomiimiiiiii i 641
PeMna lista portow specjalnychc.ccceemeimeirmerrcrrernesrnesrerreesnseens 645
Porty ustug niepozadanyChcccvreeinmesiinesinmmssnr s nnas 685
ZawartoS¢ plyty CD ... e 691

Rozdziat 6.
Podstawy programowania

dia hakerow

Jezyk C

*

Dla kazdego hakera, mlodego czy starego, mniej lub bardziej doswiadczonego, zna-
jomos¢ jezyka C jest jednym z fundamentéw wiedzy. Niemal wszystkie narzedzia
i programy, stosowane w trakcie analiz sieci i wlaman, powstaja wlasnie w tym jezy-
ku. Réwniez w niniejszej ksiazce wigkszos¢é przedstawianego kodu to wiasnie kod
zrodtowy w jezyku C. Programy te mozna modyfikowaé, dostosowywac¢ do wiasnych
potrzeb i odpowiednio kompilowac.

W pracy nad niniejszym rozdziatem wykorzystano obszerne fragmenty pracy guru
programowania Matthew Proberta. Majg one petni¢ funkcje wprowadzenia do pro-
gramowania w jezyku C i umozliwi¢ stosowanie przedstawianych w ksigzce (i zata-
czonych na CD-ROM-ie) listingdw programéw. Petny kurs jezyka znajdziesz w nie-
jednej ksigzce wydawnictwa Helion.

Jezyk C wyrdzniaja nastepujace cechy, ktore omawiamy nize;j.

¢ Blokowe konstrukcje sterowania wykonywaniem programu (typowe dla
wigkszosci jezykow wysokiego poziomu).

4 Swobodne operowanie podstawowymi obiektami ,,maszynowymi” (takimi jak
bajty) i mozliwos$¢ odwotywania si¢ do nich przy uzyciu dowolnej, wymagane;j
w danej sytuacji, perspektywy obiektowej (typowe dla jezykow asemblerowych).

4 Mozliwo$¢ wykonywania operacji zardwno wysokiego poziomu (na przyktad
arytmetyka zmiennoprzecinkowa), jak i niskiego poziomu (zblizonych
do instrukcji jezyka maszynowego), co umozliwia tworzenie kodu wysoce
zoptymalizowanego bez utraty jego przenos$nosci.

202 Hack Wars. Na tropie hakerow

Przedstawiony w niniejszym rozdziale opis jezyka C bazowa¢ bedzie na funkcjach
oferowanych przez wigkszos¢ kompilatorow dla komputerow PC. Powinien dzigki
temu umozliwi¢ rozpoczgcie tworzenia prostych programéw osobom nieposiadaja-
cym szerokiej wiedzy o jezyku (uwzglednimy migdzy innymi funkcje zapisane w pa-
mieci ROM i funkcje DOS-u).

Przyjmujemy zatozenie, ze masz, drogi Czytelniku, dostep do kompilatora C i od-

powiedniej dokumentacji funkcji bibliotecznych. Programy przyktadowe powstaty
w Turbo C firmy Borland; wiekszo$¢ elementéw niestandardowych tego narzedzia
uwzgledniono réwniez w pdzniejszych edycjach Microsoft C.

Wersje jezyka C

W pierwotnej edycji jezyka C (jeszcze przed publikacja Kernighana i Ritchie’ego,
The C Programming Language, Prentice-Hall 1988 (polskie wydanie: Jezyk ANSI C,
Wydawnictwa Naukowo-Techniczne 1994)) zintegrowane operatory przypisania (+=,
= itd.) definiowane byly odwrotnie (tj. =+, = itd.). Znakomicie utrudniato to inter-
pretacj¢ wyrazen takich jak:

x=-y
co mogloby znaczy¢
X=X-y
lub
x = (-y)
Ritchie szybko zauwazyl dwuznaczno$¢ takiego zapisu i zmodyfikowat go do postaci
znanej dzisiaj (+=, *= itd.). Mimo to wciaz stosowanych jest wiele odmian bedacych

rodzajem wyposrodkowania migdzy pierwotna wersja j¢zyka C Kernighana i Ritchie’ego
a jezykiem ANSI C. Roznice miedzy nimi dotycza przede wszystkim:

¢ wprowadzenia prototypdéw funkcji i zmiany preambuly definicji funkcji,
aby dostosowac ja do stylu prototypow,

4 wprowadzenia znaku wielokropka (...) do oznaczenia list argumentow o zmienne;j
dtugosci,

4 wprowadzenia stowa kluczowego void (dla funkcji, ktore nie zwracaja wartosci)
itypu void * dla ogélnych zmiennych wskaznikowych,

4 wprowadzenie w preprocesorze mechanizméw scalania ciagow, wklejania
elementu (token-pasting) 1 zamiany na ciag (string-izing),

4 dodanie w preprocesorze translacji ,.trygrafow” (trigraph) — tréjznakowych
sekwencji reprezentujacych znaki specjalne,

4 dodanie w preprocesorze dyrektywy #pragma i formalizacja pseudofunkcji
declared(),

Rozdziat 6. ¢ Podstawy programowania dla hakerow 203

4 wprowadzenie ciagow i znakow wielobajtowych, zapewniajacych obshuge
jezykow narodowych,

¢ wprowadzenie stowa kluczowego signed (jako uzupetnienie stowa unsigned,
stosowane w deklaracjach liczb catkowitych) i jednoargumentowego
operatora plus (+).

Klasyfikowanie jezyka C

Szerokie mozliwosci jezyka C, dopuszczenie bezposredniego operowania na adresach
i danych w pamigci oraz strukturalne podejscie do programowania sprawiaja, ze jezyk
ten klasyfikuje si¢ jako ,,jezyk programowania $redniego poziomu”. Znajduje to wyraz
w mniejszej liczbie gotowych rozwiagzan niz w jezykach wysokiego poziomu, takich
jak BASIC, ale wyzszym poziomie strukturalnym niz niskopoziomowy Assembler.

Stowa kluczowe

Pierwotna edycja jezyka C definiuje 27 stéw kluczowych. Komitet ANSI dodat do
nich 5 nowych. Wynikiem sg dwa standardy jezyka, cho¢ norma ANSI przejeta wigk-
szo$¢ elementdéw od Kerninghana i Ritchie’ego. Oto lista:

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Warto zwréci¢ uwage, ze niektore kompilatory C wprowadzaja dodatkowe stowa klu-
czowe, specyficzne dla srodowiska sprzetowego. Warto zapoznaé si¢ z nimi.

Struktura jezyka C

Jezyk C wymaga programowania strukturalnego. Oznacza to, ze na program sktada
si¢ pewna grupa nawzajem wywolujacych si¢ blokdw kodu. Dostepne sa réznorodne
polecenia stuzace do konstruowania petli i sprawdzania warunkow:

do-while, for, while, if, case
Blok programu w jezyku C ujmowany jest w nawiasy klamrowe ({}). Moze on by¢

kompletna procedura, nazywang funkcjq lub czescia kodu funkcji. Przyjrzyjmy si¢
przyktadowi:

204 Hack Wars. Na tropie hakerow

if (x < 10)
{

a=1;
b=20;
}

Instrukcje wewnatrz nawiaséw klamrowych wykonane zostana tylko wtedy, gdy spel-
niony zostanie warunek x < 10.

Jako kolejny przyktad przedstawimy pelny blok kodu funkcji, zawierajacy wewnatrz
blok petli:

int GET XO)
{

int x;

do
{

printf ("\nWprowadz 1iczbe z zakresu od 0 do 10 ");
scanf("%d",&x);

1
while(x < 0 || x > 10);
return(x);

}

Zwroémy uwage, ze kazdy wiersz instrukcji zakonczony jest Srednikiem, o ile nie jest
sygnatem poczatku bloku kodu (w takim przypadku kolejnym znakiem jest nawias
klamrowy). Jezyk C rozpoznaje wielkos¢ liter, ale nie bierze pod uwage biatych zna-
kéw. Odstepy miedzy poleceniami sa pomijane, stad koniecznos¢ uzycia srednika,
aby oznaczy¢ koniec wiersza. Tego rodzaju podejscie powoduje, ze nastgpujace pole-
cenia interpretowane sa jako identyczne:

x=0;

X =0;

x=0;

Ogodlna postac¢ programu w jezyku C jest nastgpujaca:
¢ instrukcje preprocesora kompilacji,
4 globalne deklaracje danych.
4 deklaracje i definicje funkcji (wlaczajac w to zawarto$é programu):

typ-zwracany main (lista parametrow)

instrukcgje

}

typ-zwracany f1 (lista parametrow)

instrukcgje

}

typ-zwracany f2 (lista parametrow)

instrukcje

}

Rozdziat 6. ¢ Podstawy programowania dla hakerow 205

typ-zwracany fn (lista parametrow)

{

instrukcje

}

Komentarze

Podobnie jak wigkszo$¢ jezykow, C pozwala umieszcza¢ w kodzie programu komen-
tarze. Ich ogranicznikami sa symbole /* 1 */:

/* To jest wiersz komentarza w jezyku C */

(Rownie czesto korzysta si¢ z komentarzy jednoliniowych, otrzymywanych poprzez
sekwencje //, np.:

//To tez jest wiersz komentarza P.B.)

Biblioteki

Programy w jezyku C kompiluje sie i taczy z funkcjami bibliotecznymi, dostarcza-
nymi wraz z kompilatorem. Na biblioteki sktadajg si¢ funkcje standardowe, ktorych
dziatanie zdefiniowane zostato w normie ANSI. Ich powiazanie z konkretnym kom-
pilatorem zapewnia dostosowanie do platformy sprzgtowej. Wynika stad, ze standardowa
funkcja biblioteczna printf() dziata tak samo w systemach DEC VAX i IBM PC,
cho¢ rozni sig jej, zapisany w bibliotece, kod maszynowy. Programista C nie musi za-
glebia¢ si¢ w zawarto$¢ bibliotek, wymagana jest jedynie umiej¢tnos¢ ich stosowania
i znajomos¢ dziatania funkcji, ktore pozostajg niezmienne na kazdym komputerze.

Tworzenie programow

Kompilacja

Zanim zajmiemy si¢ funkcjami, poleceniami, sekwencjami i innymi zaawansowanymi
zagadnieniami, przyjrzyjmy sie praktycznemu przyktadowi, w ktorym doprowadzimy
do skompilowania kodu. Kompilowanie programéw C jest stosunkowo prostg czyn-
noscia, jednak rozni si¢ zaleznie od stosowanego kompilatora. Kompilatory wyposazone
w menu umozliwig skompilowanie, skonsolidowanie i uruchomienie programu jed-
nym wecisnigciem klawisza. Podchodzac jednak do zagadnienia mozliwie uniwersal-
nie i tradycyjnie, przeprowadzimy ponizej cala procedur¢ w oparciu o wiersz polecen.

W dowolnym edytorze wprowadzamy ponizszy fragment kodu i zapisujemy plik jako
przyklad.c:
/*
przyktadowy komunikat tekstowy
*/

206

Hack Wars. Na tropie hakerow

#include<stdio.h>
void main()

printf("Hello!\n");
}

Kolejnym krokiem jest skompilowanie kodu do postaci pliku programu — dopiero
wtedy mozna bedzie go uruchomic (czy tez wykonaé). W wierszu polecen w tym sa-
mym katalogu, w ktérym zapisaliSmy plik przyklad.c, wprowadzamy nastgpujace po-
lecenie kompilacji:

cc przyklad.c

Nie wolno zapominaé, ze sktadnia polecenia kompilacji zalezy od kompilatora. Nasz
przyktad opiera si¢ na standardzie jezyka C. Wspdtczesnie jednak popularne jest sto-
sowanie sktadni wywodzacej si¢ z kompilatora GNU C:

gcc przyklad.c

Po wykonaniu takiego polecenia nasz kod jest juz skompilowany i ma posta¢ pliku
programu, ktéry mozemy uruchomié. Wynik jego dziatania tatwo wydedukowaé
z prostego kodu:

Hello!
Press any key to continue

To wszystko! Kompilowanie matych programéow w C nie jest trudne, nalezy jedynie
mie¢ swiadomos¢ szkodliwych niekiedy efektow ich dziatania. Programy przedsta-
wiane na stronach tej ksiazki i zalaczone na CD-ROM-ie sg oczywiscie znacznie bar-
dziej skomplikowane, jednak zasady pozostaja te same.

Typy danych

W jezyku C wyrdznia si¢ cztery podstawowe typy danych: znakowy, catkowity,
zmiennoprzecinkowy i nieokreslony. Odpowiadajg im stowa kluczowe: char, int,
float i void. Dalsze typy danych tworzy si¢ na tej podstawie, dodajac modyfikatory:
signed (ze znakiem), unsigned (bez znaku), Tong (dtuga) i short (krétka). Modyfika-
tor signed jest elementem domyslnym, co sprawia, Ze jego uzycie moze si¢ okazaé
konieczne jedynie w wypadku gdy zastosowano przelacznik kompilacji nakazujacy
domyslne korzystanie ze zmiennych bez znaku. Rozmiar kazdego typu danych zalezy
od platformy sprzgtowej, jednak norma ANSI wyznacza pewne zakresy minimalne,
zestawione w tabeli 6.1.

W praktyce tak okreslone konwencje oznaczaja, ze typ danych char nadaje si¢ najle-
piej do przechowywania zmiennych typu znacznikowego, takich jako kody stanu,
o0 ograniczonym zakresie wartosci. Mozna rowniez korzysta¢ z typu int. Gdy jednak
zakres warto$ci nie przekracza 127 (lub 255 dla unsigned char), kazda deklarowana
Ww ten sposob zmienna przyczynia si¢ do niepotrzebnego obciazania pamigci.

Natomiast trudniejsze jest pytanie o to, z ktorego typu liczb rzeczywistych korzystac
— float, double czy long double. Gdy wymagana jest doktadnos¢, na przyktad
w aplikacji stosowanej w ksiggowosci, instynktownie powinnismy uzy¢ typu long double,

Rozdziat 6. ¢ Podstawy programowania dla hakerow 207

Tabela 6.1. Rozmiary i zakresy typow danych jezyka C

Typ Rozmiar Zakres

char 8 —128 do 127

unsigned char 8 0 do 255

int 16 —32768 do 32 767

unsigned int 16 0 do 65 535

Tong int 32 —2 147 483 648 do 2 147 483 647
unsigned Tong int 32 0 do 4294 967 295

float 32 precyzja 6-cyfrowa

double 64 precyzja 10-cyfrowa

long double 80 precyzja 10-cyfrowa

wiaze si¢ to jednak z wykorzystaniem przez kazda zmienng 10 bajtow. Obliczenia na
liczbach rzeczywistych nie sg tak doktadne jak na liczbach catkowitych, warto wiec
zawsze rozwazy¢ uzycie typu int i ,,0bejscie” problemu. Typ danych float nie jest
zbyt dobry, gdyz jego 6-cyfrowa precyzja nie zapewnia doktadnosci, na ktérej zawsze
bedziemy mogli polegaé. Ogdlng zasada jest korzystanie z typow catkowitych tak
szeroko, jak tylko jest to mozliwe, a gdy pojawia si¢ koniecznos$¢ uzycia liczb rze-
czywistych, wprowadzenie typu doube.

Deklarowanie zmiennej

Kazda zmienna musi zosta¢ zadeklarowana przed uzyciem. Ogolna postacia deklara-
cji zmiennej jest:

typ nazwa;
Aby wigc przyktadowo zadeklarowaé zmienna x typu int, przeznaczong do przecho-
wywania wartosci z zakresu od —32 768 do 32 767, uzyjemy instrukcji:

int x;

Ciagi znakowe deklarowaé¢ mozna jako tabele znakdw:

char nazwal liczba elementow];

Deklaracja ciagu o nazwie nazwisko i dtugosci 30 znakdw, wygladaé bedzie nastgpujaco:
char nazwisko[30];

Tablice danych innych typéw moga mie¢ wigcej niz jeden wymiar. Oto deklaracja

dwuwymiarowej tablicy liczb catkowitych:

int x[10][10];

Elementy tablicy wywolujemy jako:

x[0][0]
x[0][1]
x[n1ln]

208

Hack Wars. Na tropie hakerow

Wyrdznia si¢ trzy poziomy dostepu do zmiennych: lokalny, na poziomie modutu
i globalny. Zmienna deklarowana wewnatrz bloku kodu bedzie dostgpna wytacznie
dla instrukcji wewnatrz tego bloku. Zmienna deklarowana poza blokami kodu funkcji,
ale poprzedzona modyfikatorem static, bedzie dostgpna wylacznie instrukcjom we-
wnatrz modutu kodu zrédlowego. Zmienna deklarowana poza blokami kodu funkcji
i niepoprzedzona modyfikatorem begdzie dostgpna dla dowolnych instrukcji w dowol-
nym module programu. Na przyktad:

int blad;
static int a;

void main() (Co prawda funkcja main dziata i bez deklaracji wartoSci zwracanej,
Jednak w takim przypadku wySwietla sie ostrzezenie (bo kompilator domy$inie
przyjmuje ja jako int i szuka funkcji return. Aby tego unikna¢, w kazdym nastepnym
przyktadzie dopisuje void P.B.)

{

int x;
int y;
}

funkcjaa()
{

/* Sprawdzenie czy zmienna a jest réwna 0 */
if (a ==0)

{
int b;
for(b = 0; b < 20; b++)
printf ("\nHello World");

}

W powyzszym przyktadzie zmienna blad jest dostgpna dla wszystkich, kompilowa-
nych jako jeden program, modutéw kodu zréodlowego. Zmienna a jest osiagalna dla
wszystkich instrukcji w funkcjach main() i funkcjaa(), ale pozostaje niewidoczna
z poziomu innych moduléw. Zmienne x i y sa dostgpne wytacznie instrukcjom we-
wnatrz funkcji main(). Z kolei zmienna b moze by¢ uzyta wylacznie przez instrukcje
wewnatrz bloku kodu po instrukcji 7.

Jezeli drugi blok kodu faktycznie ma skorzysta¢ ze zmiennej blad, wymagane bedzie
umieszczenie w nim deklaracji zmiennej globalnej extern:

extern int blad;

funkcjab()

{
}

Jezyk C nie stawia szczegdlnych przeszkod w przypisywaniu do siebie roznych typow
danych. Przyktadowo mozemy zadeklarowaé zmienna typu char, co spowoduje przy-
pisanie do przechowywania jej wartosci jednego bajtu danych. Mozna podjaé probe
przypisania do niej wartosci spoza tego zakresu:

Rozdziat 6. ¢ Podstawy programowania dla hakerow 209

void main()

{
x = 5000;

}

Zmienna x moze przechowywac¢ wartosci z zakresu od —127 do 128, a wigc wartos¢ 5000
nie zostanie przypisana. x przyjmie jednak warto$¢ 136.

Potrzeba przypisania roznych typow danych nie jest niczym oryginalnym. Aby po-
wstrzymac¢ kompilator od generowania ostrzezen o takich operacjach, mozna skorzy-
stac z instrukcji konwersji (cast statement), informujac kompilator o tym, ze operacja
wykonywana jest Swiadomie. Instrukcje taka budujemy, umieszczajac przed zmienna
lub wyrazeniem nazwe typu danych ujeta w nawiasy:

void main()

{
float x;

int y;

x =100 / 25;

y = (int)x;
}

Operacja rzutowania (int) informuje kompilator o koniecznosci konwersji wartosci
zmiennej zmiennoprzecinkowej x do liczby catkowitej, zanim ta zostanie przypisana
do zmiennej y.

Parametry formalne

Funkcja w jezyku C moze przyjmowaé parametry przekazywane przez funkcje wy-
wotujaca. Parametry te deklaruje si¢ podobnie jak zmienne, podajac ich nazwy we-
wnatrz towarzyszacych nazwie funkcji nawiasow:

int MNOZ(int x, int y)

{
/* ZwroC parametr x pomnozony przez parametr y */
return(x * y);

}

void main()
{
int a;
int b;
int c;

a =5
b=7;
c = MNOZ(a,b);

printf("%d razy %d réwna sie %d\n",a,b,c);

210 Hack Wars. Na tropie hakerow

Modyfikatory dostepu

Stosuje si¢ dwa modyfikatory dostepu: const i volatile. Warto$¢ zmiennej zadekla-
rowanej jako const nie moze zosta¢ zmieniona przez program, wartos¢ zmiennej za-
deklarowanej jako volatile moze zosta¢ zmieniona przez program. Dodatkowo, za-
deklarowanie zmiennej jako volatile uniemozliwia kompilatorowi zaalokowanie jej
do rejestru i ogranicza przeprowadzang na niej optymalizacjg.

Typy klas przechowywania zmiennych

Jezyk C przewiduje cztery rodzaje przechowywania zmiennych: extern, static, auto
i register. Typ extern umozliwia modutowi kodu zrédtowego dostep do zmienne;j
zadeklarowanej w innym module. Zmienne static dostgpne sa wylacznie z poziomu
bloku kodu, w ktorym zostaty zadeklarowane. Dodatkowo, jezeli zmienna ma zasieg
lokalny, zachowuje swoja warto$¢ migdzy kolejnymi wywotaniami bloku kodu.

Zmienne rejestrowe (register) sa, gdy tylko jest to mozliwe, przechowywane w reje-
strach procesora. Zapewnia to najszybszy dostgp do ich wartosci. Typ auto stosuje si¢
wylacznie w odniesieniu do zmiennych lokalnych. Nakazuje on zachowywanie war-
tosci zmiennej lokalnej. Poniewaz jest to modyfikator domyslny, rzadko mozna spo-
tka¢ go w programach.

Operatory

Operatory to elementy kodu, ktére nakazuja wykonanie obliczen na zmiennych. W je-
zyku C dostgpne sg nastepujace:

adres,

posredniosc,

+ plus jednoargumentowy,

- minus jednoargumentowy,

~ dopehienie bitowe,

! negacja logiczna,

++ jako prefiks — preinkrementacja, jako sufiks — postinkrementacja,

-- jako prefiks — predekrementacja, jako sufiks — postdekrementacja,

+ dodawanie,

- odejmowanie,

* mnozenie,

/ dzielenie,

% reszta z dzielenia (modulo),
<< przesunigcie w lewo,

>> przesunigcie w prawo,

& bitowa operacja AND,

Rozdziat 6. ¢ Podstawy programowania dla hakerow

211

a’?
[1]
@]

X

bitowa operacja OR,

bitowa operacja XOR,
logiczna operacja AND,
logiczna operacja OR,
przypisanie,

przypisanie iloczynu,
przypisanie ilorazu,
przypisanie reszty (modutu),
przypisanie sumy,
przypisanie roznicy,
przypisanie przesunigcia w lewo,

przypisanie przesunigcia w prawo,

przypisanie wyniku bitowej operacji AND,
przypisanie wyniku bitowej operacji OR,

przypisanie wyniku bitowej operacji XOR,

mniejsze niz,

wigksze niz,

mniejsze lub rowne,

wigksze lub réwne,

réwne,

rézne od,

bezposredni selektor sktadnika,

posredni selektor sktadnika,

jezeli a to prawda, to X, w przeciwnym razie y,

definiowanie tablic,

nawiasy oddzielaja warunki i wyrazenia,

wielokropek wykorzystuje si¢ w listach parametréw formalnych prototypow
funkcji do deklarowania zmiennej liczby parametréw lub parametrow

zmiennych typow.

Aby zilustrowaé sposob korzystania z podstawowych operatorow, przyjrzyjmy si¢
krotkiemu programowi:

void main()

{

int
int
int
a =
b =
c =

if (a == c) /*Sprawdzenie czy a ma taka samg warto$¢ jak c*/

a;
b;
C;
5;

b*2;

/*Przypisanie zmiennej a wartosci 5%/
a/2; /*Przypisanie zmiennej b wartoSci a podzielonej przez 2*/
/*Przypisanie zmiennej c warto$ci b pomnozonej przez 2%/

212 Hack Wars. Na tropie hakerow
puts("Zmienna a jest parzysta");
else
puts("Zmienna a jest nieparzysta");
}
Typowym sposobem zwigkszenia wartosci zmiennej o 1 jest wiersz:
x=x+1
Jezyk C dostarcza operatora inkrementacji, wystarczy wigc napisac:
X++
W podobny sposéb korzystamy z operatora dekrementacji, czyli zmniejszania war-
toscio 1:
X__
Pozostate operatory matematyczne wykorzystujemy podobnie. Warto jednak pamig-
ta¢ o wprowadzanych przez jezyk C mozliwosciach zapisu skroconego:
Zapis typowy Zapis w jezyku C
x=x+1 X+
x=x-1 X--
X=x%*2 X *= 2
X=x/y X /=y
X=x%5 X %=5
Funkcje

Funkcje to procedury kodu zrodlowego tworzace program w jezyku C. Ich ogdlng po-
stacig jest:

zwracany typ nazwa_funkcji(lista parametrow)

{

instrukcgje

}

Zwracany typ to typ zwracanej przez funkcje wartosci: char, int, double, void itp.
Kod wewnatrz funkcji C pozostaje niewidoczny dla innych funkcji C. Nie mozna wy-
konywac skokow z jednej funkcji do wngtrza innej. Funkcje moga jedynie wywoty-
waé inne funkcje. Nie wolno rowniez definiowa¢ funkcji wewnatrz innych funkcji.
Definicja musi zostaé umieszczona bezposrednio na poziomie modutu kodu.

Parametry przekazywane sa do funkcji jako wartosci lub jako odwotania (wskazniki).
Gdy parametr jest przekazywany jako wartos¢, funkcja otrzymuje kopie tej wartosci.
Parametr przekazywany jako odwotanie jest jedynie wskaznikiem do wiasciwego pa-
rametru. Pozwala to na zmiang jego wartosci z poziomu wywotanej funkcji. W poniz-
szym przyktadzie przekazujemy dwa parametry jako wartos¢ do funkcji funkcjaa(),

Rozdziat 6. ¢ Podstawy programowania dla hakerow 213

ktora nastgpnie podejmuje probe zmiany wartosci przekazanych zmiennych. Drugim
krokiem jest przekazanie tych samych parametrow do funkcji funkcjab(), ktéra row-
niez podejmuje probe zmiany wartosci zmiennych:

#include <stdio.h>

int funkcjaa(int x, int y)
{

/* Funkcja przyjmuje dwa parametry jako wartosci, x iy */

X=X%*2;
y=y*2

printf ("\nWarto$¢ x w funkcjaa() %d. Warto$¢ y w funkcjaa() %d",x,y);

return(x);

}

int funkcjab(int *x, int *y)
{

/* Funkcja przyjmuje dwa parametry jako odwotania, x iy */

*X:*X*2:
*y:*y*Z;

printf ("\nWarto$¢ x w funkcjab() #d. WartoS¢ y w funkcjab() %d",*x,*y);

return(*x);

}

void main()
{
int x;
int y;
int z;

x =b;
y=17;

z = funkcjaa(x,y);
z = funkcjab(&x,&y);

printf ("\nWarto$¢ x %d, wartos$¢ y %d, wartos¢ z %d".x.y,z);

}

funkcjab() nie zmienia warto$ci otrzymanych parametréw. Modyfikowana jest za-
warto§¢ wskazywanych parametrami adreséw pamigci. O ile funkcjaa() otrzymuje
z funkcji main() wartosci zmiennych x i y, funkcjab() otrzymuje z funkcji main() ich
adresy w pamigci.

Przekazywanie tablicy do funkcji

Nastegpujacy program przekazuje do funkcji tablicg, a funkcja nadaje wartosci ele-
mentom tablicy:

214

Hack Wars. Na tropie hakerow

#include <stdio.h>

void funkcjaa(int x[1)

{

int n;

for(n = 0;
x[n] =n;

}

void main()

n < 100; n++)

int tablical[100];
int Ticznik;

funkcjaa(tablica);

for(licznik = 0; Ticznik < 100; Ticznik++)
printf ("\nWartosS¢ elementu %d wynosi %d
}

funkcjaa(const int x[])

{
}

#include <stdio.h>

void funkcjaa(const int x[1)
{

int *ptr;

int n;

/*Ten wiersz generuje ostrzezenie 'suspiciou

/*(niebezpieczna konwersja wskaznika)*/

/*x jest wskaznikiem const, a ptr - nie*/
ptr = x;

for(n = 0;
{
*ptr =n;
ptr++;
!
}

void main()

{

n < 100; n++)

", licznik, tablica[licznik]);

Parametr funkcji, int x[1, jest tablica dowolnej dtugosci. Deklaracja taka jest mozli-
wa, poniewaz kompilator przekazuje jedynie adres poczatkowy tablicy, a nie wartosci
poszczegolnych jej elementdw. Konsekwencja tego jest fakt, ze funkcja moze zmie-
nia¢ warto$ci elementdw tablicy. Aby uniemozliwi¢ funkcji wprowadzanie modyfika-
cji, konieczne jest uzycie typu const:

Przy takiej deklaracji wiersz zmieniajacy zawartos$¢ tablicy wywotaltby btad kompila-
cji. Okreslenie parametru jako wartosci stalej nie likwiduje jednak posredniosci jego
przekazania. [lustruje to ponizszy program:

S pointer conversion'*/

Rozdziat 6. ¢ Podstawy programowania dla hakerow 215

int tablica[100];
int Ticznik;

funkcjaa(tablica);

for(1icznik = 0; Ticznik < 100; Ticznik++)
printf("\nhWartos¢ elementu %d wynosi %d",licznik,tablica[licznik]);
1

Przekazywanie parametrow funkcji main()

Jezyk C umozliwia przekazanie parametréw do uruchamianego programu z poziomu
systemu operacyjnego. Do ich odczytania wykorzystuje si¢ zmienne argc i argv[]:

#include <stdio.h>

void main(int argc, char *argv[])

{

int n;

for(n = 0; n < argc; n++)
printf ("\nWartosc parametru %d to %s",n,argvinl);

}

Parametr argc przechowuje liczbe przekazanych programowi parametréow. W tablicy
argv[] zapisane sa ich adresy; argv[0] jest zawsze nazwa uruchamianego programu.
Mechanizm ten ma szczegdlne znaczenie dla aplikacji wymagajacych dostepu do pli-
kow systemowych i danych. Rozwazmy nastgpujaca sytuacje: mata aplikacja obstugi
baz danych przechowuje swoje dane w pojedynczym pliku dane.dat; aplikacja ta musi
zostaé tak zaprojektowana, aby mozna byto uruchomic ja z dowolnego katalogu, czy
to na dysku twardym, czy dyskietce; musi rowniez zapewni¢ uruchamianie za posred-
nictwem $ciezki wyszukiwania DOS-u (path). Do poprawnej pracy aplikacji jest wigc
wymagane, aby zawsze mogta odnalez¢ plik dane.dat. Rozwiazanie takie zapewni
przyjecie zatozenia, ze plik danych jest zawsze w identycznym katalogu co sam pro-
gram. Ponizszy fragment ilustruje wykorzystanie parametrow argc i argv w celu utwo-
rzenia $ciezki do pliku danych aplikacji:

#include <string.h>
char nazwa_pliku[160];

void main(int argc, char *argv[])

{
char *plik_danych = "DATA.DAT";

char *p;

strcpy(nazwa_pliku,argv[0]);
p = strstr(nazwa_pliku, ".exe"); (kompilator tworzy plik z rozszerzeniem o matych
= Titerach P.B.)

if (p == NULL)

/* P1ik uruchomieniowy jest plikiem .COM */

216 Hack Wars. Na tropie hakerow

p = strstr(nazwa_pliku, ".com");

}

/* Wyszukujemy ostatni uko$nik */
while(*(p-1) = "\\")
p--;

strcpy(p,plik_danych);
1

Przedstawiony program tworzy i zapisuje w zmiennej nazwa_pliku ciag postaci Sciez-
ka\dane.dat. Jezeli wigc przyktadowa nazwa pliku uruchomieniowego bedzie fest.exe
i zostanie on umieszczony w katalogu \borlandc, zmiennej nazwa_pliku przypisany
zostanie ciag \borlandc\dane.dat.

Wyijscie z funkgcji

Polecenie return powoduje natychmiastowe wyjscie z funkcji. Jezeli w deklaracji
funkcji podano typ zwracanej wartosci, w poleceniu return nalezy uzy¢ parametru te-
£0 samego typu.

Prototypy funkcji

Prototypy funkcji umozliwiaja kompilatorowi C sprawdzanie poprawnosci przekazy-
wanych, do i z funkcji, danych. Ma to istotne znaczenie jako zabezpieczenie przed
przekroczeniem zakresu zaalokowanego dla zmiennej obszaru pamigci. Prototyp funkcji
umieszcza si¢ na poczatku programu po poleceniach preprocesora (takich jak #include)
i przed deklaracjami funkcji.

Polecenia preprocesora C

W jezyku C w tresci kodu zrodtowego mozna umieszczac polecenia dla kompilatora.
Okresdla si¢ je terminem polecenia preprocesora. Norma ANSI definiuje nastgpujace:

#if

#ifdef

#ifndef

#else

#elif

#endif

#include

#define

#undef

#1ine

#error

#pragma

Wszystkie polecenia preprocesora rozpoczyna znak krzyzyka (hash), czyli #. Kazde
wymaga osobnego wiersza kodu (uzupetnionego ewentualnie komentarzem). Ponizej
przedstawiamy krétkie omowienie.

Rozdziat 6. ¢ Podstawy programowania dla hakerow 217

#define

Polecenie #define tworzy identyfikator, ktéry kompilator zastapi podanym ciagiem
w danym module kodu Zrédlowego. Na przyktad:

#define FALSE 0
#define TRUE !'FALSE

Kompilator zastapi wszystkie dalsze wystapienia ciagu FALSE znakiem 0, a wszystkie
dalsze wystapienia ciagu TRUE — ciagiem !0. Zastgpowaniu nie podlegaja identyfi-
katory wewnatrz znakdéw cudzystowu, a wigc wiersz:

printf ("TRUE");
nie zostanie zmieniony, ale
printf ("%d",FALSE);
podlega modyfikacji.
Polecenie #define moze réwniez zosta¢ uzyte do definiowania makr, takze makr z pa-
rametrami. Do zapewnienia poprawnosci zastapien zaleca si¢ ujmowanie parametrow

w nawiasy. W ponizszym przyktadzie deklarujemy makro o nazwie larger(), przyj-
mujace dwa parametry i zwracajace ten z nich, ktérego warto$¢ jest wieksza.

#include <stdio.h>
#define larger(a,b) (a >b) ? (a) : (b)

int main()

{
printf("\n%d jest wieksze",larger(5,7));

}
#error

Polecenie #error powoduje przerwanie procesu kompilacji i wy$wietlenie podanego
tekstu, na przyktad:

#error SKOMPILOWANE DO MODULU B
powoduje zatrzymanie kompilacji i wyswietlenie:

SKOMPILOWANE DO MODULU B

#include

Polecenie #include nakazuje kompilatorowi odczytanie i przetworzenie zawartosci
dodatkowego pliku zrédlowego. Nazwa pliku musi zostaé¢ ujeta w cudzystéw lub
wstawiona migdzy znaki <>, na przyktad:

#include "module2.c"
#include <stdio.h>

Jezeli nazwa pliku zostala wpisana migdzy znaki <>, kompilator wyszukuje go w kata-
logu okreslonym w konfiguracji. Jest to zasada ogoélna.

218 Hack Wars. Na tropie hakerow

#if, #else, #elif, #endif

Grupa polecen #if dostarcza mechanizmu kompilacji warunkowej. Stosowana jest
dos¢ typowa sktadnia:

#if wyrazenie_stale
instrukcje

#else
instrukcje

#endif

Polecenie #e11f to skrdcona postac #else if:

#if wyrazenie
instrukcje
#elif wyrazenie
instrukcje

#endif

#ifdef, #ifndef

Rozwinigciem tych polecen jest #1f defined (jezeli zdefiniowano) i #if not defined
(jezeli nie zdefiniowano). Konstrukcje sktadniowe sa nastepujace:

#ifdef nazwa_makra
instrukcje
#else
instrukcje
#endif

#ifndef nazwa_makra
instrukcje

#else
instrukcje

#endif

nazwa_makra to identyfikator utworzony za pomoca deklaracji #define.

#undef

Polecenie #undef usuwa definicje makra utworzonego przy uzyciu wczesniejszej in-
strukcji #define.

#line

Polecenie #1ine modyfikuje zmienne globalne kompilatora LINE i FILE .
Ogdlng postacia instrukcji jest:
#line numer "nazwa pliku"

Warto$¢ numer zostaje umieszczona w zmiennej LINE , a "nazwa pliku" — w zmien-
nej FILE .

Rozdziat 6. ¢ Podstawy programowania dla hakerow 219

#pragma

Umozliwia korzystanie z polecen specyficznych dla kompilatora.

Instrukcje sterujgce

Jak w kazdym jezyku programowania, rowniez w C, znajdziemy instrukcje spraw-
dzajace wartos¢ wyrazenia. Wynikiem takiego sprawdzenia jest warto$¢ TRUE lub FALSE.
Warto$ci FALSE odpowiada liczba 0, a TRUE — liczba rézna od zera.

Instrukcje wykonania warunkowego

Podstawowa instrukcja wykonania warunkowego jest if o nastgpujacej sktadni:

if (wyrazenie)
instrukcje

else
instrukcje

gdzie instrukcje moze by¢ instrukcja pojedyncza lub ujetym w nawiasy klamrowe
blokiem kodu. Element else jest opcjonalny. Jezeli wartoscia wyrazenie jest TRUE,
wykonywana jest instrukcja podana bezposrednio po nim. W pozostatych przypadkach
wykonywana jest instrukcja podana po stowie else (o ile ta czgs¢ sktadni zostata uzyta).

Alternatywa dla konstrukcji if. . .else jest polecenie ?: w postaci:

wyrazenie ? instrukcja prawda : instrukcja_fatsz
Jezeli wartoScig wyrazenia jest TRUE, wykonywana jest pierwsza instrukcja. W pozo-
statych przypadkach wykonywana jest instrukcja druga. Ilustruje to przyktad:

#include <stdio.h>

void main()

{
int x;
= 0;

printf("\nx to Ticzba %s", x % 2 == 0 ? "parzysta" : "nieparzysta");

}

Jezyk C oferuje rowniez instrukcjg switch, utatwiajaca poréwnywanie wyrazenia
z pewna lista wartosci. Wykonywane sa instrukcje powiazane z pierwsza dopasowang
wartos$cig listy. Sktadnia polecenia switch jest nastepujaca:

switch (wyrazenie)

{

case wartoscl instrukcgje
break;
case wartosc? : instrukcje

break;

220 Hack Wars. Na tropie hakerow

case wartoscén instrukcje
break;
default : instrukcje

}

Uzycie instrukcji break nie jest wymagane, ale jej pominigcie powoduje dalsze po-
rownywanie wyrazenia z kolejnymi elementami listy wartosci.

#include <stdio.h>

void main()

{

int x;
X = 6;

switch (x)

{

case 0 : printf ("\nx réwna sie zero")
break;
case 1 : printf ("\nx réwna sie jeden");
break;
case 2 : printf ("\nx réwna sie dwa");
break ;
case 3 : printf ("\nx réwna sie trzy");
break ;
default : printf ("\nx jest wieksze od trzech")

}
}

Instrukcje switch mozna zagniezdzac.

Instrukcje iteracji
W jezyku C stosuje sie trzy instrukcje petli (iteracji): for, while i do-while. Sktadnia
petli for jest nastgpujaca:
for(inicjalizacja;warunek; inkrement)
instrukcje
Jest ona szczegodlnie przydatna, gdy korzystamy z licznika, jak w ponizszym przykta-
dzie wyswietlajacym zestaw znakow ASCII:

#include <stdio.h>
void main()
{

int x;

for(x = 32; x < 128; x++)
printf ("Zd\tZc\t", x,x);
}

Dopuszczalna jest rowniez nieskonczona petla for:

Rozdziat 6. ¢ Podstawy programowania dla hakerow 221

for(;;)
{

instrukcje

}

Jezyk C pozwala uzywac tez pustych instrukcji. Ponizsza petla usuwa z ciagu poczat-
kowe znaki odstepu:

for(; *str == "' ": str++)

Warto zwrdci¢ uwage na sredniki odpowiadajace inicjalizacji petli i pustej instrukcji.

Petla whiTe ma konstrukcje nieco prostsza:

while(warunek)
instrukcje

Instrukcja lub blok instrukcji (ujety w nawiasy klamrowe) beda powtarzane do czasu,
gdy wyrazenie warunku przyjmie wartos¢ FALSE. Jezeli wyrazenie nie jest prawdziwe
jeszcze przed wejsciem do petli, instrukcje nie beda wykonywane w ogdle. Jest to
istotna roznica w stosunku do petli do-while, ktora zawsze zostaje wykonana co naj-
mniej raz. Jej sktadnia to:

do
{

instrukcje

}

while(warunek) ;

Instrukcje skoku

Instrukcja return pozwala powr6ci¢ z funkcji wykonywanej do funkcji, z ktorej ta zo-
stata wywotana. W zaleznosci od zadeklarowanego typu wartosci zwracanej przez
funkcje instrukcja return moze wymagac¢ odpowiedniego parametru:

int MULT(int x, int y)
{

return(x * y);

}
lub

void funkcjaa()

{
printf ("\nHello World");
return; (w tym wypadku return nie jest konieczny P.B.)

}
Instrukcja break stuzy do wychodzenia z petli lub instrukcji switch. W przypadku pe-
tli powoduje to jej przedwczesne zakonczenie, jak w ponizszym przyktadzie:

#include <stdio.h>

void main()

{

int x;

222 Hack Wars. Na tropie hakerow

for(x = 0; x < 256; x++)

{
if (x == 100)
break;

printf ("Zd\t",x);
}
}

Uzupehieniem break jest polecenie continue, wymuszajace przeprowadzenie nastep-
nej iteracji petli. Kolejng wykonywana instrukcja jest w tym przypadku instrukcja pe-
tli (dalsze instrukcje w iterowanym bloku sa pomijane). Dostepna jest rowniez funk-
cja przedwczesnego zakonczenia wykonywania programu — exit(). Mozna za jej
pomoca przekaza¢ wartos¢ zwracang do programu wywotujacego:

exit(wartos¢ zwracana) ;

Continue

Stowo kluczowe continue nakazuje skok do instrukcji kontrolnej petli. W przypadku
petli zagniezdzonych jest to instrukcja petli wewnetrznej (while, do. . .while()). To spo-
sob na tagodne zakonczenie petli jak w ponizszym przyktadzie, gdzie odczytujemy
zapisane w pliku ciagi:

#include <stdio.h>

void main()
{
FILE *fp;
char *p;
char buff[100];

fp = fopen("dane.txt","r");
if (fp == NULL)

fprintf(stderr,"Nie mozna otworzy¢ pliku data.txt");
exit(0);

}

do

{
p = fgets(buff,100,fp);
if (p == NULL)
/* Wymuszenie wyjscia */
continue;
puts(p);
!
while(p);

}

W przypadku petli for instrukcja continue powoduje najpierw wykonanie wyrazenia
inkrementacji, a dopiero po nim nastgpuje sprawdzenie warunku zakonczenia.

Rozdziat 6. ¢ Podstawy programowania dla hakerow 223

Wejscie-wyjscie
Pobieranie danych

Program w jezyku C moze pobiera¢ dane z konsoli (ktora jest standardowym urza-
dzeniem wejsciowym), pliku lub portu. Ogélnym poleceniem odczytu danych ze stan-
dardowego strumienia wejSciowego stdin jest scanf(). Skanuje ono po jednym znaku
kolejne pola wejsciowe. Podlegaja one formatowaniu zgodnie z pierwszym z przekaza-
nych funkcji scanf() parametréw. Nastepnie pole zostaje zapisane pod adresem prze-
kazanym jako kolejny parametr wywotania funkcji. Przyktadowy program odczytuje
pojedyncza liczbe catkowitg ze strumienia stdin:

void main()

{

int x;

scanf("%d", &x);
}

Warto zwrdci¢ uwage na operator uzyty jako prefiks zmiennej x na licie parametrow
wywotania funkcji scanf(). Funkcja ta zapisuje bowiem wartos¢ pod okreslonym ad-
resem, nie postugujac si¢ mechanizmem przypisywania wartosci zmiennej. Ciagiem
formatujacym jest ciag znakowy, ktory moze zawieraC trzy typy danych: znaki odstepu
(spacja, tabulator, przejscie do nowego wiersza), znaki wiasciwe (wszystkie znaki ASCII
z wyjatkiem znaku %) i specyfikatory formatowania. Specyfikatory te maja nastgpu-
jaca skladnig:

%[*][szerokosc]h|1|L]typ

Oto przyktad:

#include <stdio.h>

void main()

{

char nazwisko[30];
int wiek;

printf ("Podaj nazwisko i wiek ");
scanf("%30s%d", nazwisko, &wiek);
printf ("\n%s %d",nazwisko,wiek);

}

Zwréémy uwage na wiersz #include <stdio.h> — nakazuje on kompilatorowi prze-
twarzanie pliku nagtéwkowego stdio.h, w ktorym zawarte sg prototypy funkcji scanf()
iprintf(). Po uruchomieniu tego prostego programu tatwo przekonamy sig, ze uzycie
znaku odstgpu przerwie wprowadzanie pierwszego pola danych.

Alternatywna funkcja pobierania danych jest gets(), odczytujaca ciag znakdéw ze stru-
mienia stdin do momentu napotkania znaku nowego wiersza. W ciagu docelowym znak
nowego wiersza zastapiony zostaje znakiem NULL (0). Charakterystyczna dla tej funkcji
jest mozliwo$é odczytywania znakow odstepu. Oto nowa wersja powyzszego programu
(korzystajaca z gets() w miejsce scanf()):

224 Hack Wars. Na tropie hakerow

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void main()

{
char dane[80];
char *p;
char nazwisko[30];
int wiek;

printf ("\nPodaj nazwisko i wiek ");
/* 0dczyt ciagu danych */
gets(dane);

/* p Jjest wskaznikiem do ostatniego znaku pobieranego ciggu */
p = &dane[strlen(dane) - 1];

/* Usuwamy spacje koncowe, zastepujac je znakami NULL */

while(*p == "' "){
*p = 0;
p--;

}

/* Lokalizujemy ostatniag spacje w ciagu */
p = strrchr(dane,' ');

/* Odczytujemy wiek i zamieniamy na liczbe */
wiek = atoi(p);

/* Wstawiamy znak konca ciagu przed polem wieku */
*n = .
p=0;

/* Kopiujemy ciag danych do zmiennej */
strcpy(nazwisko, dane);

/* WySwietlamy wyniki operacji */
printf ("\nNazwisko: %s, wiek: %d", nazwisko, wiek);

}
Wyprowadzanie danych

Podstawowg funkcja wyprowadzania danych jest printf(). Jest ona podobna do scanf()
z ta réznica, ze zapisuje dane do standardowego strumienia wyjsciowego stdout.
Funkcja pobiera liste pdl danych wyjsciowych, odpowiednio stosuje specyfikatory
formatowania i wyprowadza wynik. Mozna stosowac takie same przeksztalcenia for-
matujace jak w przypadku funkcji scanf(), jak réwniez dodatkowe znaczniki:

- wyréwnuje dane wyjsciowe do lewej, uzupehniajac je z prawej strony
znakami odstgpu migdzywyrazowego (spacji),

+ wymusza poprzedzanie liczb znakiem.

Nieco odmienna jest takze posta¢ specyfikatora szerokosci. Jest on rozbudowany o ele-
ment okreslajacy precyzje:

SzerokoSc¢.precyzja

Rozdziat 6. ¢ Podstawy programowania dla hakerow 225

Aby wiec wyswietli¢ liczb¢ zmiennoprzecinkowa z doktadnoscig do trzech miejsc
dziesigtnych, piszemy:

printf ("%.3f",x);

Ponizej przedstawiamy list¢ specjalnych stalych znakowych, ktére moga pojawié si¢
na liscie parametréw funkcji printf():

\n nowy wiersz (NL),
\r powrdt karetki (CR),
\t tabulator,
\b znak cofania (backspace),
\f znak nowej strony,
\v tabulator pionowy,
\\ ukosnik odwrotny (backslash),
\' apostrof,
\" cudzystow,
\? znak zapytania,
\\¢ ciag w notacji é6semkowe;j,
\X ciagg w notacji szesnastkowej.

Kolejny program ilustruje, w jaki sposob wyswietli¢ liczbe catkowita w postaci dzie-
sigtnej, szesnastkowej i 6semkowej. Liczba 04 po znaku procentow (%) w instrukcji
printf() nakazuje kompilatorowi dopetnienie wyswietlanej liczby do szerokosci co
najmniej czterech cyfr:

/* Prosty program konwersji liczb dziesietnych */
/* do postaci szesnastkowej i dsemkowej */

#include <stdio.h>

void main()

{

int x;

do

{
printf ("\nPodaj Ticzbe (lub 0, aby zakonczy¢) ");

scanf("%d",&x);
printf ("%04d %04X %040",x,x,x);
!
while (x !=0);
1

Do funkcji pokrewnych printf() nalezy fprintf(), ktorej prototyp ma postac:
fprintf(FILE *fp, char *format[,argument,...1);

Jej zadaniem jest przesylanie sformatowanych danych wyjsciowych do okre$lonego
strumienia plikowego.

226 Hack Wars. Na tropie hakerow

Kolejng tego rodzaju funkcja jest sprintf() o prototypie:

sprintf(char *s, char *format[,argument,...1);

Alternatywa dla printf() jest puts(), funkcja przesytajaca prosty ciag do strumienia
stdout. Przesytany ciag zostaje automatycznie uzupetliony znakiem nowego wiersza.
Jest to rozwiazanie szybsze od printf(), jednak jego mozliwosci sg ograniczone.

Bezposrednia wymiana danych z konsolg

Do przesytania i odczytu danych z konsoli (klawiatury i ekranu) mozna wykorzysty-
wac rowniez bezposrednie funkcje we-wy. Wyroznia je litera ,,c”” na poczatku — od-
powiednikiem printf() jest wigc cprintf(), a odpowiednikiem puts() — funkcja
cputs(). Roéznice migdzy funkcjami bezposredniej wymiany danych a funkcjami
standardowymi sa nastgpujace.

4 Nie s wykorzystywane strumienie predefiniowane, nie mozna wigc przekierowaé
danych przesytanych funkcjami komunikacji bezposrednie;j.

¢ Funkcji bezposrednich nie mozna przenosi¢ miedzy réznymi systemami
operacyjnymi (m.in. nie mozna z nich korzysta¢ w programach dla Windows).

4 Funkcje bezposrednie sa szybsze niz standardowe.

4 Nie zapewniaja wspolpracy ze wszystkimi trybami wyswietlania (zwlaszcza
trybami graficznymi VESA).

Wskazniki

Wskaznik to zmienna, ktéra przechowuje adres elementu danych w pamieci. Deklara-
cja wskaznika jest podobna do deklaracji zwyktej zmiennej, ale nazwa poprzedzana
jest znakiem gwiazdki (*), na przyktad:

char *p;
Powyzszy wiersz deklaruje zmienna p jako wskaznik do zmiennej typu char.

Wykorzystanie wskaznikéw dostarcza szerokich mozliwosci, wymaga jednak szcze-
g6lnej uwagi. Skutki przypisania blednego adresu sa najczesciej nieprzewidywalne.
Oto przyktad prostego programu, w ktérym wykorzystywany jest wskaznik:

#include <stdio.h>

void main()

{
int a;
int *x;

/* x jest wskaznikiem do danych typu int */

100;
&a;

a

printf("\nZmienna a przechowuje warto$¢ %d pod adresem %p.",a,x);

Rozdziat 6. ¢ Podstawy programowania dla hakerow 227

Wartosci wskaznikéw mozna zwieksza¢ i zmniejszaé, dopuszczalne sa rowniez inne
operacje matematyczne. Typowym zastosowaniem wskaznikow jest zapewnienie dy-
namicznego przydzialu pamigci. W trakcie pracy programu czgsto pojawia si¢ potrze-
ba przejsciowego (tymczasowego) zaalokowania bloku pamigci. Korzystamy wow-
czas z funkcji malloc():

wskaznik_dowolnego typu = malloc(liczba_bajtow) ;

Funkcja malloc() zwraca wskaznik typu void, co oznacza, ze moze on wskazywac
dane dowolnego typu — int, char, float itd. W ponizszym przyktadzie alokujemy
pamigc dla tabeli 1000 liczb catkowitych.

#include <stdio.h>
#include <stdlib.h>

void main()
{
int *x;
int n;

/* x jest wskaznikiem do danych typu int */

/* Tworzymy tablice 1000-elementowg */
/* sizeof() dostarcza kompilatorowi informacji o liczbie */
/* bajtow wymaganej do przechowywania zmiennej typu int */

x = malloc(1000 * sizeof(int));

/* Sprawdzamy czy alokacja zostata wykonana */

if (x == NULL)

{
printf("\nNie mozna zaalokowa¢ pamieci dla 1000-elementowe] tablicy wartosci
-int");
exit(0);

1

/* Przypisujemy wartosci poszczegdlnym elementom */
for(n = 0; n < 1000; n++)
{

*X =n;

X++;

}

/* Przywracamy x wartoS$C adresu poczatkowego tabeli */
x -= 1000;

/* WySwietTamy wartosSci tabeli */

for(n = 0; n < 1000; n++){
printf("\nElement %d przechowuje wartos¢ %d",n,*x);
X++;

!

/* Po uzyciu, dealokujemy blok pamieci */

free(x);

228 Hack Wars. Na tropie hakerow

Wskazniki wykorzystuje si¢ rdéwniez w odniesieniu do tablic znakéw, czyli ciqggow
(strings). Poniewaz wszystkie ciagi w programach C konczy bajt o wartosci 0, korzy-
stajac ze wskaznika, mozemy policzy¢ znaki w ciagu:

#include <stdio.h>
#include <string.h>

void main()

{
char *p;
char tekst[100];
int dlugosc;

/* Inicjujemy zmienng 'tekst' */
strcpy(tekst,"To jest ciag znakowy");

/* Ustawiamy warto$¢ zmiennej p na poczatek tekstu */
p = tekst;

/* Inicjujemy zmienng dtugos$¢ */
dlugosc = 0;

/* Z1iczamy znaki w zmiennej tekst */
while(*p)
{

dlugosc++;
pH+;

}

/* WySwietTamy wynik */
printf("\nDlugosc ciagu znakowego to: #d",dlugosc);
}

Wymagana do zaadresowania 1 MB pamigci 20-bitowa liczbe dzieli si¢ na dwie warto-
Sci: przesuniecie (offset) i segment (kazdy segment to 64 kB). Do przechowywania nu-
merdéw segmentow pamieci komputer IBM PC wykorzystuje tzw. rejestry segmentowe.
Konsekwencja takiego rozwiazania sa w jezyku C trzy dodatkowe stowa kluczowe:

4 near — wskazniki ,,bliskie” maja rozmiar 16 bitéw i umozliwiaja dostep
do danych biezacego segmentu,

¢ far — wskazniki ,,dalekie” obejmuja wartosci okreslajace przesunigcie
i segment, umozliwiajac dostep do dowolnego adresu w pamieci,

4 huge — wskazniki ,,ogromne” to odmiana wskaznikéw dalekich, zapewniajaca
mozliwos$¢ zwigkszania i zmniejszania wartosci w catym zakresie 1| MB
(kompilator generuje odpowiedni kod modyfikujacy wartos¢ przesunigcia).

Nie bedzie zapewne zaskakujace stwierdzenie, Ze przetwarzanie programu korzystaja-
cego ze wskaznikow typu near bedzie szybsze niz w przypadku programu, w ktérym
zastosowano wskazniki far. Wskazniki huge sa oczywiscie najwigkszym obciazeniem.
Kompilatory C wyposazone sa w makro zwracajace adres odpowiadajacy podanym
wartosciom numeru segmentu i przesunigcia:

void far *MK FP(unsigned segment, unsigned offset);

Rozdziat 6. ¢ Podstawy programowania dla hakerow 229

Struktury

Jezyk C oferuje technike grupowania zmiennych pod jedna nazwa, dostarczajac w ten
sposob wygodnego sposobu przechowywania powiazanych ze soba informacji i struktu-
ralizowania ich. Sktadnia definicji struktury jest nastgpujaca:

typedef struct
{

typ_zmiennej nazwa_zmiennej;
typ_zmiennej nazwa_zmiennej;

;zazwaistruktury;
Uzywanie zmiennych strukturalnych jest niezbedne przy korzystaniu z plikow, w kto-
rych wystepuje uporzadkowanie oparte na rekordach danych. W ponizszym przykta-
dzie operowaé bedziemy na prostym pliku z lista adreséw. Rozpoczniemy od deklara-
cji struktury dane, ztozonej z szesciu pdl: nazwisko, adres, miasto, wojewodztwo,
poczta inrtelefonu:

typedef struct
{

char nazwisko[30];
char adres[30];

char miasto[30];

char wojewodztwo[30];
char kod[6];

char nrtelefonu[15];

}

dane;

Odwotania do pol zmiennej strukturalnej maja postac:

zmienna_strukt.nazwa pola;

Nie ma ograniczenia liczby pdl struktury, nie jest rOwniez wymagane, aby typy pol
byty takie same lub podobne, na przyklad:

typedef struct
{

char nazwisko[30];
int wiek;
char *notatki;

J
dp;

Jest to poprawna deklaracja struktury obejmujaca: pole tablicy znakowej, pole liczby
catkowitej 1 pole wskaznika do zmiennej znakowej. Aby przekaza¢ zmienna struktu-
ralng jako parametr, korzystamy z jej adresu — poprzedzamy nazwe¢ zmiennej ope-
ratorem &. Oto przykltadowy program wykorzystujacy struktury w celu wykonania
prostych operacji na pliku listy adresoéw:

230 Hack Wars. Na tropie hakerow

#include <stdio.h>
#include <stdlib.h>
#include <io.h>
#include <string.h>
#include <fentl.h>
#include <sys\stat.h>

/* Ticzba wierszy to liczba wierszy ekranu */
#define 1iczba wierszy 25

typedef struct

{
char nazwisko[30];
char adres[30];
char miasto[30];
char wojewodztwo[307;
char kod[6];
char nrtelefonu[15];

}

dane;

dane rekord;
int handle;

/* Prototypy funkcji */

void ADD_REC(void);
void CLS(void);

void DISPDATA(void);
void FATAL(char *);
void GETDATA(void);
void MENU(void);
void OPENDATA(void);
int SEARCH(void);

void CLS()
{

int n;

for(n = 0; n < liczba_wierszy; n++)
puts("");
}

void FATAL(char *blad)

{
printf(" \nBlad krytyczny: %s",blad);
exit(0);

}

void OPENDATA()
{

/* Sprawdz czy istnieje plik danych. Jezeli nie, utworz. */
/* Jezeli tak, otwoérz do odczytu-zapisu na koncu pliku. */

handle = open("address.dat",0 RDWR|O_APPEND,S IWRITE);

Rozdziat 6. ¢ Podstawy programowania dla hakerow 231

if (handle == -1)
{
handle = open("address.dat",0 RDWR|O_CREAT,S IWRITE);
if (handle == -1)
FATAL("Nie mozna utworzy¢ pliku danych");
}

}

void GETDATA()
{

/* Pobierz dane adresowe */
CLSQO);

printf("Nazwisko ");
gets(rekord.nazwisko);
printf("\nAdres ");
gets(rekord.adres);
printf("\nMiasto ");
gets(rekord.miasto);
printf("\nWojewddztwo ");
gets(rekord.wojewodztwo) ;
printf("\nKod pocztowy ");
gets(rekord.kod);
printf("\nNumer telefonu ");
gets(rekord.nrtelefonu);

}

void DISPDATA()

{
/* WySwiet]l dane adresowe */
char tekst[5];

CLSO);

printf("Nazwisko #s",rekord.nazwisko);
printf("\nAdres %s",rekord.adres);

printf("\nMiasto %s",rekord.miasto);
printf("\nWojewddztwo %s",rekord.wojewodztwo);
printf("\nKod pocztowy %s",rekord.kod);
printf("\nNumer telefonu %s\n\n",rekord.nrtelefonu);

puts(" Wcisnij ENTER");
gets(tekst);
}

void ADD_REC()

{
/* Dotacz do pliku danych nowy rekord */

int wynik;
wynik = write(handle,&rekord, sizeof(dane))

if (wynik == -1)
FATAL("Zapis do pliku danych niemozliwy");
}

int SEARCHO)
{

232 Hack Wars. Na tropie hakerow

char tekst[100];
int wynik;

printf("Wprowadz wzér wyszukiwania ");
gets(tekst);
if (*tekst == 0)

return(-1);

/* Zlokalizuj poczatek pliku */
1seek(handle,0,SEEK SET);

do
{
/* 7ataduj rekord do pamieci */
wynik = read(handle,&rekord,sizeof(dane));
if (wynik > 0)
{
/* Przeszukaj rekord */
if (strstr(rekord.nazwisko,tekst) != NULL)
return(l);
if (strstr(rekord.adres,tekst) != NULL)
return(1);
if (strstr(rekord.miasto,tekst) != NULL)
return(l);
if (strstr(rekord.wojewodztwo,tekst) !'= NULL)
return(1);
if (strstr(rekord.kod,tekst) != NULL)
return(1);
if (strstr(rekord.nrtelefonu,tekst) != NULL)
return(1);

}

while(wynik > 0);
return(0);

}

void MENU()
{
int opcja;
char tekst[10];

do

{
CLSO);
puts("\n\t\t\tWybierz opcje");
puts("\n\n\t\t\t1l Dodaj nowy rekord")
puts("\n\n\t\t\t2 Przeszukiwanie danych");
puts("\n\n\t\t\t3 Wyjscie");
puts("\n\n\n\n\n");
gets(tekst);
opcja = atoi(tekst);

switch(opcja)

case 1 : GETDATAQ);
/* Przed dotaczaniem rekordu przejdz do konca pliku */
1seek(handle,0,SEEK_END);

Rozdziat 6. ¢ Podstawy programowania dla hakerow 233

ADD REC();
break ;

case 2 : if (SEARCH())
DISPDATA();
else

puts("NIEZNALEZIONE!");
puts("Wcisnij ENTER");
gets(tekst);

1

break ;

case 3 : break;

}

}
while(opcja != 3);

}

void main()

CLSQO);
OPENDATA() ;
MENU() ;

}

Pola bitowe

Jezyk C przewiduje mozliwos¢ korzystania w strukturach ze zmiennych o rozmiarze
mniejszym niz 8 bitow. Okresla si¢ je mianem pol bitowych, a ich rozmiar moze by¢
dowolny, od 1 bitu wzwyz. Deklaracja pola bitowego wyglada nastgpujaco:

typ nazwa : liczba bitow;

Przyktadem moze by¢ deklaracja kilku jednobitowych znacznikéw stanu:

typedef struct
{

unsigned przeniesienie : 1
unsigned zero o1
unsigned przepelnienie : 1;
unsigned parzystosc 1

}
df;

df znaczniki;

Zmienna znaczniki bedzie zajmowaé w pamigci tylko 4 bity, mimo ze sktada si¢ z 4 pdl,
z ktorych kazde dostepne jest jako osobne pole struktury.

Union

Kolejnym utatwieniem jezyka C, pozwalajacym zapewni¢ optymalne wykorzystanie
dostepnej pamigci, jest struktura union, czyli zbiér zmiennych, wspotuzytkujacych je-
den adres pamigci. Oznacza to, oczywiscie, ze w danym momencie dostgpna jest tyl-
ko jedna ze zmiennych sktadowych. Deklaracja union ma nastgpujaca postac:

234 Hack Wars. Na tropie hakerow

union nazwa

{

typ nazwa_zmiennej;
typ nazwa_zmiennej;

typ nazwa_zmiennej;

b
Wyliczenia

Wyliczenie (enumeracja) to przypisanie liscie symboli rosnacych wartosci catkowi-
tych. Wyliczenie deklarujemy:

enum nazwa { 1ista } lista zmiennych;

Przyktadem moze by¢ definicja listy kolorow:

enum KOLORY

{
CZARNY,

NIEBIESKI,
ZIELONY,
CZERWONY,
BRAZOWY,
JASNOSZARY,,
CIEMNOSZARY,
JASNONIEBIESKT,
JASNOZIELONY,
JASNOCZERWONY,
Z0LTY,

BIALY

Operacje na plikach

W operacjach dostepu do plikéw jezyk C postuguje si¢ buforowanymi strumieniami
plikowymi. Niektore z platform jezyka, jak UNIX i DOS, oferuja réwniez niebuforo-
wane uchwyty plikow.

Strumienie buforowane

Dostep do strumieni buforowanych realizowany jest za posrednictwem wskaznika do
zmiennej typu FILE. Ten szczegdlny typ danych zdefiniowany zostat w nagtowku sz-
dio.h. Aby wigc zadeklarowaé wskaznik do pliku, wprowadzamy:

#include <stdio.h>
FILE *ptr;

Aby otworzy¢ strumien, uzywamy funkcji fopen(). Pobiera ona dwa parametry: na-
zw¢ otwieranego pliku oraz tryb dostgpu. Oto lista tryboéw dostepu.

Rozdziat 6. ¢ Podstawy programowania dla hakerow 235

Tryb Opis

r otworz tylko do odezytu (plik musi istniec),

w utworz do zapisu; zastap, jezeli plik o podanej nazwie istnieje,

a otworz do dotaczania danych (dopisywania na koncu pliku); utworz nowy plik,
jezeli plik o podanej nazwie nie istnieje,

r+ otworz istniejacy plik do odczytu i zapisu (plik musi istniec),

w+ utworz do odezytu i zapisu; zastap, jezeli istnieje,

a+ otworz do czytania i dolaczania danych; utworz nowy plik, jezeli nie istnieje.

Aby okresli¢ tryb tekstowy lub binarny, do opisu trybu mozna dotaczy¢ t lub b. W przy-
padku pominigcia tego znacznika strumien zostanie otwarty w trybie okreslanym
zmienng globalng fmode. Odczyt i zapis danych do strumieni plikowych w trybie tek-
stowym wiaze si¢ z konwersja — podczas zapisu znaki CR i LF zamieniane sg na pary
CR LF, a przy odczycie pary CR LF ulegaja zamianie na pojedynczy znak LF. Tego
rodzaju operacje nie s wykonywane w trybie binarnym.

Jezeli funkcja fopen() nie bedzie mogta otworzy¢ pliku, zwréci w miejsce wskaznika
warto$¢ NULL (zdefiniowana w stdio.h). Ponizszy program utworzy nowy plik dane.txt
i udostepni go do odczytu i zapisu:

#include <stdio.h>
void main()
FILE *fp;

fp = fopen("dane.txt","w+");
1

Aby zamkna¢ strumien, uzywamy funkcji fclose(), wymagajacej podania wskaznika
do pliku.

fclose(fp);
Jezeli podczas zamykania strumienia wystapi btad, funkcja fclose() zwrdci wartosé
niezerowa (znacznik EOF — End Of File). Do przesylania i odbierania danych ze
strumieni shuzg cztery podstawowe funkcje: fgetc(), fputc(), fgets() i fputs().

Funkcja fgetc() odczytuje pojedynczy znak z okreslonego strumienia wejsciowego
(przeksztatcany do liczby catkowitej):

int fgetc(FILE *7p);
Jej odwrotnoscia jest fputc(), zapisujaca pojedynczy znak do okreslonego strumienia
wyjsciowego:

int fputc(int ¢, FILE *fp);

Funkcja fgets() odczytuje ze strumienia wejsciowego ciag:

char *fgets(char *s, int liczba bajtow, FILE *fp);

236 Hack Wars. Na tropie hakerow

Odczyt zostaje przerwany po pobraniu /iczba bajtow-1 znakéw lub znaku nowego
wiersza (réwniez wstawianego do tablicy). Do odczytanego ciagu s dotaczany jest kon-
czacy znak NULL (znany takze pod postacia "\0"). W przypadku wystapienia btedow
funkcja zwraca NULL.

Funkcja fputs() zapisuje do strumienia ciag zakonczony znakiem NULL (inaczej "\0"):

int fputs(const char *s, FILE *fp);

Wszystkie opisywane funkcje zwracaja w przypadku btedoéw wartos¢ EOF (zdefinio-
wana w stdio.h) z wyjatkiem funkcji fgets(), ktéra w przypadku wystapienia btedu
zwraca NULL. Ponizszy program tworzy kopi¢ pliku dane.dat, o nazwie dane.old, ilu-
strujac zarazem uzycie wszystkich czterech funkcji:

#include <stdio.h>

int main()

{
FILE *in;
FILE *out;

in = fopen("data.dat","r");

if (in == NULL)
{

puts("\nNie mozna otworzy¢ do odczytu pliku dane.dat");
return(0);

}

out = fopen("dane.old","w+");
if (out == NULL)

puts("\nNie mozna utworzy¢ pliku dane.old");
return(0);

}

/* Powtarzaj odczytywanie i zapisywanie pojedynczych bajtéw */
/* az do natrafienia na EOF */
while(!feof(in))

fputc(fgetc(in),out);

/* Zamknij strumienie plikowe */
fclose(in);
fclose(out);

return(0);

}

W kolejnym przyktadowym programie uzywamy funkcji fputs do kopiowania tekstu
ze strumienia stdin (zazwyczaj oznacza to znaki wprowadzane z klawiatury) do no-
wego pliku dane.txt:

#include <stdio.h>

int main()

{

Rozdziat 6. ¢ Podstawy programowania dla hakerow 237

FILE *fp;
char tekst[100];

fp = fopen("dane.txt","w+");
do

gets(tekst);
fputs(tekst, fp);

!
while(*tekst);

fclose(fp);
}

Swobodny dostep do danych strumieni

Dostep swobodny do danych dostarczanych za posrednictwem strumieni zapewnia
funkcja fseek() o prototypie:

int fseek(FILE *fp, long liczba bajtow, int zacznij od);

Funkcja zmienia pozycj¢ wskaznika pliku skojarzonego ze strumieniem otwartym
wcezesniej przez fopen(). Wskaznik ustawiany jest na /iczba bajtow za (lub przed
w przypadku wartosci ujemnej) pozycja zacznij_od. Ta ostatnia moze by¢ poczatek
pliku, biezace potozenie wskaznika lub koniec pliku. Pozycje te symbolizujg state
SEEK_SET, SEEK_CUR i SEEK_END. Udana operacje fseek () sygnalizuje zwrdcenie warto-
$ci 0. Uzupetnieniem fseek () jest funkcja ftell(), zwracajaca wartos¢ biezacej pozy-
cji wskaznika pliku:

long int ftell(FILE *fp);

Funkcja zwraca pozycje wskaznika pliku, okreslona jako ilo$¢ bajtéw od poczatku
pliku, lub -1 w przypadku btedu.

Uchwyty

Uchwyty plikow (handles) otwiera funkcja open() o prototypie:
int open(char *nazwa pliku, int dostepl, unsigned trybl);

Udang operacj¢ sygnalizuje zwrdcenie numeru uchwytu. W pozostatych przypadkach
zwracane jest -1. Na warto$¢ dostep skladaja si¢ potaczone bitowa operacja OR stale
symboliczne, odpowiadajace deklaracjom w pliku fentl.h. Roznia si¢ one w zaleznosci
od kompilatora. Do typowych naleza:

0 _APPEND przed kazdym zapisem wskaznik pliku bedzie ustawiany na koncu pliku,
0 CREAT jezeli plik nie istnieje, zostanie utworzony,

0_TRUNC obcina istniejacy plik do dtugosci 0 bajtow,

0_EXCL uzywane w potaczeniu z O_CREAT,

0_BINARY otwiera plik w trybie binarnym,

0 _TEXT otwiera plik w trybie tekstowym.

238 Hack Wars. Na tropie hakerow

Po przypisaniu uchwytu pliku za pomoca polecenia open() mozna korzysta¢ z funkcji
read() iwrite(). Prototyp read() jest nastepujacy:

int read(int handle, void *buf, unsigned liczba bajtow);

Funkcja podejmuje probg odczytu podanej liczby bajtoéw i zwraca liczbg bajtéw fak-
tycznie pobranych przez uchwyt pliku. Odczytane dane umieszczane sa w bloku pa-
migci okreslonym parametrem buf. Funkcja write() dziata podobnie, nie rézni si¢
rowniez jej prototyp i sposob generowania wartosci zwracanej. Zapisuje ona podana
ilo$¢ bajtéw z okreslonego wskaznikiem bloku pamigci. Pliki otwierane funkcja
open() zamykamy funkcja close():

int close(int handie);

Funkcja close() zwraca 0 w przypadku operacji udanej, a -1 w przypadku wystapie-
nia bledow.

Dostep swobodny zapewnia funkcja 1seek(), bardzo podobna do fseek(), ale pobie-
rajaca jako parametr numer uchwytu, a nie wskaznik strumienia FILE. W ponizszym
przyktadzie wykorzystujemy uchwyt pliku do zapisu danych z stdin (czyli klawiatu-
ry) do nowego pliku o nazwie dane.xt:

#include <io.h>

#include <fentl.h>

#include <sys\stat.h>

int main()

{
int handle;

char tekst[100];
handle = open("dane.txt", O_RDWR|O_CREAT|O_TRUNC,S_IWRITE);
do

gets(tekst);
write(handle, &tekst, strlen(tekst));

while(*tekst);

close(handle);

}
Przeglad funkcji plikowych
Norma ANSI definiuje zwiazane z plikami operacje we-wy przy uzyciu strumieni,
opisujac réznorodne funkcje. Prototyp funkcji fopen() ma postac:
FILE *fopen(const char *nazwa, const char *tryb);
Funkcja podejmuje probg otwarcia strumienia taczacego z plikiem o podanej nazwie
w okre$lonym trybie. Udana operacja konczy si¢ zwrdceniem wskaznika typu FILE.

W przypadku niepowodzenia funkcji zwraca NULL. Na wczesniejszych stronach przed-
stawiony zostat opis parametru tryb.

Rozdziat 6. ¢ Podstawy programowania dla hakerow 239

Funkcja fclose() stuzy do zamykania strumienia otwartego wczesniejszym wywota-
niem fopen():

int fclose(FILE *fp);

Udana operacja fclose() konczy si¢ oproznieniem wszystkich buforéw pliku i zwro-
ceniem wartosci 0. W przypadku bteddéw zwracana jest wartos¢ EOF.

Wiele komputerow korzysta z buforowanego dostgpu do plikéw. Oznacza to, ze dane,
zapisywane do strumienia, wstepnie umieszczane sa w pamieci, a faktyczny zapis na-
stepuje dopiero po przekroczeniu pewnej granicznej ilosci bajtow. Jezeli w czasie,
gdy dane nie zostaly jeszcze faktycznie zapisane do strumienia, nastapi awaria zasila-
nia, dane zostana utracone. Zabezpiecza przed tym funkcja fflush(), wymuszajaca
zapisanie wszystkich danych oczekujacych:

int fflush(FILE *7p);
Jezeli wywotanie fflush() jest udane, zwiazane ze strumieniem bufory zostaja oproz-
nione i zwracana jest warto$¢ 0. W przypadku btedow funkcja zwraca warto$¢ EQF.
Kolejng funkcja jest ftell() zwracajaca lokalizacje wskaznika pliku:
long int ftell(FILE *7p);
Funkcja zwraca przesunigcie wskaznika pliku w stosunku do poczatku pliku lub -1L
w przypadku btedéw. Przesunigcie wskaznika pliku do nowej pozycji umozliwia fseek():
int fseek(FILE *fp, Tong offset, int zacznij od);

Funkcja podejmuje probe przesunigcia wskaznika pliku o offset bajtéw od pozycji
zacznij_od, okreslonej jedna ze statych:

SEEK_SET poczatek pliku,
SEEK_CUR biezaca pozycja wskaznika pliku,
SEEK_END koniec pliku.

Przesunigcie (offset) moze by¢ wartoscia dodatnig (przesuwanie wskaznika w strong
konica pliku) lub ujemna (przesuwanie wskaznika w strone poczatku pliku). Aby
szybko przenies¢ wskaznik do poczatku pliku i usunaé wczesniejsze odwotania do
btedow, C dostarcza funkeji rewind():

void rewind(FILE *7p);

Funkcja ta dziata podobnie jak fseek (fp,0L,SEEK SET). Jednak fseek() usuwa znacz-
nik EOF, a rewind() dodatkowo wszystkie sygnaty btedéw. Informacje o bigdach funk-
cji plikowych mozna pobra¢ przy uzyciu funkcji ferror():

int ferror (FILE *7p);
Funkcja zwraca wartos¢ niezerowa, jezeli w okreslonym strumieniu wystapit btad. Po

sprawdzeniu wartosci ferror() nalezy zadbaé¢ o usuniecie sygnatéw btedow za po-
moca funkcji clearerr():

void clearerr(FILE *fp);

240

Hack Wars. Na tropie hakerow

Sprawdzenie, czy spelniony jest warunek osiagnigcia konca pliku, realizuje predefi-
niowane makro feof():

int feof(FILE *7p);

Makro zwraca wartos$¢ niezerowa, gdy dla danego strumienia stwierdzono osiagnigcie
konca pliku. W pozostatych przypadkach zwracang wartoscia jest 0.

Dostepnych jest kilka funkcji realizujacych odczyt danych ze strumienia plikowego.
Pojedyncze znaki mozna odczytywac funkcja fgetc():

int fgetc(FILE *7p);
fgetc() zwraca warto§¢ ASCII pobranego znaku lub znak EOF w przypadku wystapie-

nia btedu. Odczyt ciagu danych umozliwia funkcja fgets(), odczytujaca ciag zakon-
czony znakiem nowego wiersza:

char *fgets(char *s, int n, FILE *fp);
W wyniku udanego wywotania funkcji w zmiennej S umieszczany jest ciag zakon-
czony znakiem nowego wiersza lub zawierajacy n-1 znakow. Funkcja zachowuje
konczacy ciag znak nowego wiersza, dofaczajac do ciagu s bajt NULL. W przypadku

nieudanego wywotania zwracany jest wskaznik pusty. Ciagi zapisujemy do strumie-
nia funkcja fputs():

int fputs(const char *s, FILE *fp);
Funkcja fputs() zapisuje wszystkie znaki ciagu s, z wyjatkiem koncowego bajtu
NULL, do strumienia fp. Standardowo funkcja zwraca ostatni zapisany znak, a w przy-

padku wystapienia btedow — EOF. Dostepna jest rowniez funkcja zapisujaca do stru-
mienia pojedynczy znak fputc():

int fputc(int ¢, FILE *fp);
Funkcja zwraca zapisany znak lub, w przypadku wystapienia btedéw, znak EOF.

Aby odczyta¢ ze strumienia duzy blok danych lub rekord, mozna poshuzy¢ si¢ funkcja
fread():

size t fread(void *ptr, size t rozmiar, size t n, FILE *fp);
Funkcja podejmuje probe odezytu n elementow, z ktérych kazdy ma dtugosé rozmiar,
ze strumienia plikowego 7p do bloku pamigci okreslonego wskaznikiem ptr. Aby
ustali¢, czy operacja przebiegta bez zaklocen, korzystamy z funkcji ferror().
Siostrzana funkcja fread() jest fwrite():

size t fwrite(const void *ptr, size t rozmiar, size t n, FILE *fp);
Funkcja zapisuje n elementéw o dtugosci rozmiar z obszaru pamigci okreslonego
wskaznikiem ptr do strumienia p.
Funkcja fscanf() umozliwia odczyt danych formatowanych:

int fscanf(FILE *fp, const char *format[,adres ...1);

Rozdziat 6. ¢ Podstawy programowania dla hakerow 241

Funkcja zwraca liczbe faktycznie odczytanych pol, a EOF w przypadku konca pliku.
Ponizszy przyktad ilustruje uzytecznos$¢ funkcji fscanf() podczas odczytywania ze
strumienia liczb:

#include <stdio.h>

void main()

{

}

FILE *fp;

int a;

int b;

int c;

int d;

int e;

char tekst[100];

fp = fopen("dane.txt", "w+");

if(1fp)
{

perror("Nie mozna utworzy¢ pliku");
exit(0);

}
fprintf(fp,"1 2 3 4 5 \"Wiersz Ticzb\"");
fflush(fp);

if (ferror(fp))

{
fputs("Btad przy zapisie strumienia", stderr);
exit(1);

1

rewind(fp);

if (ferror(fp))

{
fputs("Btad przy przewijaniu strumienia"”, stderr);
exit(l);

!

fscanf(fp,"%d #d %d %d %d %s", &a, &b, &c, &d, &e, tekst);
if (ferror(fp))
{

fputs("Btad odczytu ze strumienia", stderr);
exit(l);
!

printf("\nFunkcja fscanf() zwrécita %d %d %d %d %d %s".a,b,c,d,e,tekst);

Jak tatwo zauwazy¢, zapis formatowanych danych realizuje funkcja fprintf(). Gdy
pojawia si¢ potrzeba zapisania polozenia wskaznika pliku i pdézniejszego jego przy-
wrdcenia, mozna skorzysta¢ z funkcji fgetpos() i fsetpos(). Pierwsza z nich odczy-
tuje biezaca pozycje wskaznika pliku:

int fgetpos(FILE *fp, fpos_t *pozycja);

242

Hack Wars. Na tropie hakerow

Funkcja fsetpos() ustawia wskazniki pliku na okreslonej pozycji:
int fsetpos(FILE *fp, const fpos_t *pozycja);
Typ fpos_t zdefiniowany zostal w nagtowku stdio.h. Funkcje te sa wygodniejsze
w uzyciu niz ftell() i fseek().
Z otwartym juz strumieniem mozna skojarzy¢ nowy plik. Umozliwia to funkcja freopen():
FILE *freopen(const char *nazwa, const char *tryb, FILE *fp);
Funkcja zamyka strumien istniejacy i podejmuje probe jego ponownego otwarcia przy
uzyciu podanej nazwy pliku. Znajduje to zastosowanie przy przekierowywaniu stru-
mieni predefiniowanych stdin, stdout i stderr do pliku lub urzadzenia. Przyktado-

wo, gdy pojawia si¢ potrzeba przekierowania wszystkich danych wyjsciowych kiero-
wanych do stdout na drukarke, mozna uzy¢ polecenia:

freopen("LPT1","w",stdout);

Predefiniowane strumienie we-wy

Wstepnie zdefiniowane zostaly trzy strumienie we-wy: stdin, stdout i stderr. Do-
mys$lnie stdin i stdout odpowiadaja klawiaturze i monitorowi. Na wielu platformach,
w tym systemow DOS i UNIX, dostepna jest mozliwos¢ ich przekierowania. Stru-
mien stderr domyslnie powiazany jest z monitorem (wyswietlaczem). Praktyka jego
przekierowywania nie jest raczej stosowana. Jego podstawowym zadaniem jest za-
pewnienie mozliwosci wyswietlania komunikatow bleddéw, nawet w sytuacji gdy po-
wigzanie standardowego wyjscia (stdout) zostato zmienione:

fputs("Komunikat o btedzie", stderr);

Funkcje printf() i puts() przekazuja dane do strumienia stdout. Funkcje scanf()
igets() pobieraja dane ze strumienia stdin. Przekierowanie tych strumieni zmienia
sposob dziatania funkcji.

Jako przyktad plikowych operacji we-wy na platformie PC, korzystajacych z mozli-
wosci przekierowania strumieni, przedstawimy prosty program przesytajacy do stru-
mienia stdout zawarto$¢ okreslonego pliku, przedstawiong jako wartosci szesnastko-
we. Polecenie w postaci:

dump nazwa_pTliku.xxx > dane_wyJjSciowe.xxx
pozwoli zmieni¢ domyslne powiazanie strumienia stdout z monitorem.

#include <stdio.h>
#include <fentl.h>
#include <io.h>

#include <string.h>

main(int argc, char *argv[])
{
unsigned Tlicznik;
unsigned char v1[20];
int f1;
int x;
int n;

Rozdziat 6. ¢ Podstawy programowania dla hakerow 243

if (argc !=2)

fputs("\nBLAD. Poprawna sktadnia wywotania: dump f1\n",stderr)
return(1);

!
f1 = open(argv[1],0 RDONLY);

if (f1 = -1)

{
fprintf(stderr, "\nBtAD. Nie mozna otworzy¢ %s\n",argv[1])

return(l);

}
fprintf(stdout, "\nZAWARTOSC PLIKU %s\n\n",strupr(argv[11));

Ticznik = 0;

while(1)

{
/* Wypetnienie bufora zerami */
memset (v1,0,20);

/* Pobranie do bufora danych z pliku */
x = _read(fl,&vl1,16);

/* x =0 to EOF, x = -1 oznacza btad */
if (x < 1)
break ;

/* Wyprowadz offset w pliku */
fprintf(stdout, "%06d(%05x) ", Ticznik, licznik);

licznik +=16;

/* Wyprowadz szesnastkowe wartosci bajtéw z bufora */
for(n =0; n < 16; n++)
fprintf(stdout, "%02x ",v1[n])

/* Wyprowadz wartosci ASCII bajtéw z bufora */
for(n = 0; n < 16; n++)

if ((vi[n] > 31) && (v1l[n] < 128))
fprintf(stdout,"%c",vllnl);
else
fputs(".", stdout);
}

/* Zakoficz znakiem nowego wiersza */
fputs("\n",stdout);
!

/* zakonczenie normalne */
return(0);

}

244 Hack Wars. Na tropie hakerow

Ciagi

Jezyk C nalezy do najlepiej wyposazonych w funkcje obstugi ciagéw posrod uniwer-
salnych jezykéw programowania. Ciag to jednowymiarowa tablica znakow zakon-
czona bajtem zerowym. Ciagi mozna inicjowa¢ dwoma sposobami. Pierwszym jest
nadanie im statej wartosci w kodzie programu:

int main()

{

char *p = "System 5";

char nazwal] = "Program testowy";
return(0);

}
Drugi to utworzenie ciagu w czasie wykonywania programu za pomoca funkcji strcpy():

char *strcpy(char *cel,const char *Zrédto);

Funkcja strcpy () kopiuje ciag zrodtowy do lokalizacji docelowej, na przyktad:

#include <stdio.h>

int main()

{

char nazwa[50];
strcpy(nazwa, "Servile Software");

printf("\nWarto$¢ ciggu 'nazwa' to %s",nazwa);
return 0;

}

Jezyk C umozliwia bezposredni dostgp do kazdego bajtu ciagu:

#include <stdio.h>

int main()

{

char nazwa[50];
strcpy(nazwa, "Servile Software");
printf("\nWarto$¢ ciaggu 'nazwa' to %s",nazwa);

/* 7astapienie pierwszego bajtu literg 's' */
nazwal0] = 's"';

printf("\nWarto$¢ ciggu 'nazwa' to #s",nazwa);
return 0;

}

Niektére kompilatory C wyposazone zostaty w funkcje konwers;ji ciagéw do wielkich
i matych liter, nie obejmuje ich jednak norma ANSI. W specyfikacji pojawiajq si¢ za
to funkcje toupper() i tolower(), zwracajace pojedynczy znak (w postaci wartosci int)
zamieniony na liter¢ wielka lub mala. Latwo na tej podstawie utworzy¢ wtasne funk-
cje konwersji ciagow:

Rozdziat 6. ¢ Podstawy programowania dla hakerow 245

#include <stdio.h>

void strupr(char *zrodlo)

{

char *p;

p = zrodlo;
while(*p)

{
if((*p)>=97 & (*p)<=122)
*p = toupper(*p);
pH+;
!
}

void striwr(char *zrodlo)

{

char *p;

p = zrodlo;
while(*p)

{
iT((*p)>=65 && (*p)<=90)
*p = tolower(*p);
pt+t;
}
}

int main()

{

char nazwa[50];

strcpy(nazwa, "Servile Software");
printf("\nWarto$¢ ciggu 'nazwa' to %s",nazwa);
strupr(nazwa);

printf("\nWarto$¢ ciggu 'nazwa' to %s",nazwa);
striwr(nazwa);

printf("\nWarto$¢ ciggu 'nazwa' to #s",nazwa);
return 0;
}
(To niezupetnie tak. Funkcje toupper i tolower tworzg litery wielkie i mate nie
sprawdzajac, jaka jest posta¢ Zrédtowa. Konwersja odbywa sie odpowiednio poprzez
odjecie Tub dodanie do warto$ci znaku 32 (bo taka jest réznica pomiedzy odpowiadajacymi
sobie Titerami wielkimi i matymi). Je$1i argument funkcji toupper bedzie juz literg
wielka, wynik konwersji okaze sie bezsensowny. W tym przypadku 'S’ zostanie zamienione
na ‘3"). W funkcjach striwr i strupr potrzebne bytoby wiec sprawdzanie, czy znak
spetnia kryteria, np.:
while (*p)

{
if((*p)>=97 && (*p)<=122)
*p = toupper(*p);

p++;

246

Hack Wars. Na tropie hakerow

}

oraz
while (*p)

{

if((*p)>=65 && (*p)<=90)
*p = tolower(*p);

p++;

}

Dodatkowe Tinie programu wstawitem w kod P.B.).

W przeciwienstwie do innych jezykéw programowania C nie narzuca ograniczenia dhu-
gosci ciagu. Jednak w przypadku niektorych procesorow (CPU) pojawia si¢ ogranicze-
nie wielkosci bloku pamigci. Oto prosty program odwracajacy kolejnos¢ znakow w ciagu:

#include <stdio.h>
#include <string.h>

char *strrev(char *s)

{
/* Odwraca kolejno$¢ znakéw w ciggu, pozostawiajac jedynie */
/* koncowy znak NULL */

char *pocz;
char *koniec;
char tmp;

/* Ustaw wskaznik 'koniec' na ostatni znak ciagu */
koniec = s + strlen(s) - 1;

/* Zabezpiecz wskaznik do poczatku ciagu */
pocz = s;

/* Zamiana */
while(koniec >= s)

{
tmp = *koniec;
*koniec = *s;
*s = tmp;
koniec--;
S++;

return(pocz);

void main()

{
char tekst[100];

char *p;
strcpy(tekst,"To jest ciag");
p = strrev(tekst);

printf("\n%s",p);

Rozdziat 6. ¢ Podstawy programowania dla hakerow 247

strtok()

Funkcja strtok() jest istotna funkcja jezyka C, sluzaca do wylaczania fragmentéw
ciagu. Stosuje si¢ ja, gdy poszczegodlne podciagi rozdzielone sa znanymi ograniczni-
kami, na przyktad przecinkami:

#include <stdio.h>
#include <string.h>

void main()

{
char dane[50];

char *p;
strepy(dane, "CZERWONY , POMARANCZOWY , ZOLTY , ZIELONY ,NIEBIESKI");

p = strtok(dane,",");
while(p)

{

puts(p);

p = strtok(NULL,",");
b
}

Program mozna oprzec tez na petli for():

#include <stdio.h>
#include <string.h>

void main()

char dane[50];
char *p;

strcpy(dane, "CZERWONY , POMARANCZOWY , ZOLTY, ZIELONY ,NIEBIESKI") ;

for(p = strtok(dane,","); p; p = strtok(NULL,","))

{
puts(p);

}

W pierwszym wywotaniu funkcji strtok() podajemy nazweg zmiennej ciagu oraz
ogranicznik. Funkcja zwraca wowczas wskaznik do poczatku pierwszego podciagu
i zastepuje pierwszy ogranicznik zerem. Kolejne wywotania strtok() wykonywane sg
w petli. Pierwszym parametrem jest wowczas NULL, a funkcja zwraca kolejne podcia-
gi. Poniewaz dopuszczalne jest podanie listy ogranicznikdw, funkcja strtok() moze
postuzy¢ do utworzenia prostego programu zliczajacego stowa:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void main(int argc, char *argv[])

FILE *fp;
char bufor[256];

248

Hack Wars. Na tropie hakerow

char *p;
long licznik;

if (argc !=2)

fputs("\nBtAD. Poprawna sktadnia wywotania: wordent fI\n", stderr)
exit(0)
}

/* Otworz plik do odczytu */
fp = fopen(argv[1],"r");

/* Sprawdz czy plik zostat otwarty */
if (Ifp)

fputs("\nBtAD. Nie mozna otworzyC pliku zrodtowego\n",stderr);
exit(0)
}

/* Inicjuj licznik */
Ticznik = 0;

do
{

/* Odczytaj z pliku wiersz danych */
fgets(bufor, 255, fp);

/* SprawdZ czy nie wystapit btad lub znak EOF */
if (ferror(fp) || feof(fp))
continue;

/* Z1icz stowa w pobranym wierszu */
/* Stowa wyrdznia sie jako elementy rozdzielone znakami */

/* \t (tab) \n (nowy wiersz) , ; : . ! ? () - spacja */
p = strtok(bufor, "\t\n,;:.!1?20)- ");
while(p)
Ticznik++;
p = strtok(NULL,"\t\n,;:.1?20)- ");
1

}
while(!ferror(fp) && !feof(fp));

/* Odczyt zakonczony. Btad? */
if (ferror(fp))

fputs("\nBtad przy odczycie pliku zrédtowego\n",stderr)
fclose(fp);
exit(0)

1

/* Odczyt zakonczony poprawnie, znakiem EOF */

/* Wyprowadzamy liczbe stéw */

printf("\nP1ik %s zawiera %1d stow(stowa)\n",argv[1],1icznik);
fclose(fp);

Rozdziat 6. ¢ Podstawy programowania dla hakerow 249

Zamiana liczb na ciagi i ciagow na liczby

Wszystkie kompilatory C zapewniaja mozliwos¢ konwertowania liczb na ciagi przy
uzyciu takich funkcji jak sprintf(). Funkcja ta ma jednak wiele zastosowan, co po-
woduje, ze jest rozbudowana i mato wydajna. Moze ja zastgpowac funkcja ITOS(),
korzystajaca z dwoch parametréw: liczby catkowitej ze znakiem i wskaznika do ciagu
znakowego. Funkcja kopiuje liczbe do okreslonego wskaznikiem miejsca w pamigci.
Podobnie jak sprintf(), funkcja ITOS() nie sprawdza, czy ciag docelowy ma wystar-
czajaca do przechowania wyniku konwersji dtugos¢. Oto przyktadowa funkcja, ktora
kopiuje liczbe signed int do ciagu znakowego.

void ITOS(long x, char *ptr)
{

/*Zamien dziesietng liczbe catkowita ze znakiem na ciag znakdéw */
long pt[9] = { 100000000, 10000000, 1000000, 100000, 10000, 1000, 100, 10, 1 }
int n;

/* Sprawdz znak */

if (x<0)

{
*ptre+ = -0
/* Zamien x na warto$¢ bezwzgledng */
x=0-x;

}

for(n =10; n<9; ntt)

{

if (x > ptin])

*ptr++ = "0" + x / ptin];
X %= ptn];

1
*ptr="\0";
(zapewnia zakonczenie tancucha znakowego i zapobiega wypisywaniu gtupot, gdy
= zmienna tablicowa ma wiekszy wymiar, niz liczba tego potrzebuje P.B.)
return;

}

(Powyzszy program dziata nieprawidtowo, gdy w zamienianej liczbie znajduja sie
w zera. Ponizej przedstawiam proponowang przeze mnie poprawng wersje P.B.):

void ITOS(Tong x, char *ptr)
{
/*Zamien dziesietng Ticzbe catkowita ze znakiem na cigg znakdéw */
Tong pt[9] = { 100000000, 10000000, 1000000, 100000, 10000, 1000, 100, 10, 1 };
int n;
int licznik=0; //T1icznik potrzebny do zliczania zer na poczatku ciagu

/* Sprawdz znak */
if (x < 0)
{
*ptr++ = -
Ticznik++;
/* Zamien x na warto$¢ bezwzgledng */
x=0-x;

250

Hack Wars. Na tropie hakerow

for(n =10; n<9; ntt+)

{

licznik++;
*ptr++ = "0" + x / ptin];
X %= ptinl;

}

*ptr="\0";

ptr=ptr-Ticznik; //powrdt wskaznika na poczatek ciagu

Ticznik=0;

if(*ptr=="-") //ominiecie minusa na poczatku (jesli jest)
ptr+;

while(*ptr=="0") { //pomijanie poczatkowych zer
licznik++;
ptr++;

1
while(*ptr!="\0") {
*(ptr-Ticznik)=*ptr; //przepisywanie ciagu juz bez zer na poczatku
ptr++;

!
*(ptr-1icznik)="\0";

return;

}
Jezyk C oferuje dwie funkcje do zamiany ciagéw znakowych na liczby zmiennoprze-
cinkowe: atof() i strtod(). Prototyp funkcji atof() ma postac:

double atof(const char *s);
a prototyp funkcji strtod():

double strtod(const char *s, char **endptr);
Obie funkcje przegladaja ciag i przeprowadzaja konwersj¢ az do momentu natrafienia
na niezrozumialy znak. Réznica migdzy nimi polega na tym, ze strtod() pobiera do-
datkowy parametr, wskaznik char ustawiany na pierwszy znak ciagu, ktéry nie zostat
objety konwersja. Znacznie zwigksza to wygode sprawdzania poprawnosci wykona-
nia operacji.
Aby zamieni¢ ciag na warto$¢ catkowita, mozna uzy¢ funkcji atoi():

int atoi(const char *s);
Nalezy pamigtac, ze funkcja atoi() nie zapewnia zadnej kontroli przepetnienia zmien-
nej. Nie jest zdefiniowana warto$§¢ zwracana w takiej sytuacji. W podobny sposob

dziata funkcja atol(), zwracajaca wartos¢ 1ong. Odpowiedniki z dodatkowym para-
metrem nosza nazwy strol() i stroul().

Obstuga tekstu

Cztowiek zapisuje informacje jako pewien ,.tekst”, ztozony ze stow, liczb i znakéw
przestankowych. Stowa zlozone sa z liter wielkich i matych, odpowiednio do wyma-
gan gramatyki. Wszystko to sprawia, ze komputerowe przetwarzanie tekstu nie jest

Rozdziat 6. ¢ Podstawy programowania dla hakerow 251

zadaniem prostym. Norma ANSI definiuje wiele funkcji przetwarzania ciagdw zna-
kowych, ktore z natury rozpoznaja wielkos¢ liter. Oznacza to, ze litera ,,A” rozpo-
znawana jest jako rézna od ,,a”. Jest to pierwsze zagadnienie, ktorego rozwiazanie
musi znalez¢é programista pracujacy nad programem przetwarzajacym tekst. Na szcze-
Scie, zardwno kompilatory Borlanda, jak i Microsoftu wyposazone zostaty w funkcje
obstugi ciagow, ktore nie rozpoznaja wielkosci liter.

Taka odmiang funkcji strcmp() jest stricmp(), a strncmp() — strnicmp(). Gdy jed-
nak pojawia si¢ kwestia przenosnosci kodu, niezbgdna jest zgodnos¢ z ANSI C, co
pociaga za soba napisanie wlasnych funkcji.

Ponizej przedstawiamy prosta implementacj¢ nierozrozniajacej wielkosci liter odmia-
ny funkcji strstr(). Tworzy ona kopie ciagdw, zamienia je na wielkie litery i wyko-
nuje standardowa operacje strstr(). Pozwala to okresli¢ poszukiwana warto$¢ prze-
sunigcia i utworzy¢ wskaznik do ciagu zrodtowego.

char *stristr(char *sl, char *s2)
{

char c1[1000];

char ¢2[1000];

char *p;

strepy(cl,sl);
strepy(c2,s2);

strupr(cl);
strupr(c2);

p = strstr(cl,c2);
if (p)

return sl + (p - cl);
return NULL;

}

Kolejna funkcja przeglada ciag s1, wyszukujac stowo podane jako s2. Aby funkcja
zwrocita warto§¢ TRUE, znalezione musi zosta¢ odrebne stowo, a nie jedynie sekwen-
cja znakow. Wykorzystujemy przygotowana wezesniej funkcje stristr().

int word_in(char *sl, char *s2)
{
/*zwraca wartos$¢ niezerowa, jezeli s2 jest stowem zawartym w s1*/
char *p;
char *q;
int ok;

ok = 0;
q = sl;

do
{
/* Lokalizuj wystapienie sekwencji znakdw s2 w sl */
p = stristr(q,s2);
if (p)
{

252

Hack Wars. Na tropie hakerow

}

/* Inaleziony */
ok = 1;

if (p > sl)
/* Sprawdz znak przed znalezionym ciaggiem*/

if (%(p-1) >= 'A" && *(p-1) <= 'z")
ok = 0;
}

/* Niech p wskazuje koniec ciagu */
p += strien(s2);
if (*p)
{
/* Sprawdz znak za znalezionym ciggiem */
if (%p >= 'A" & *p <= 'Z2")
ok =0
}

}
q-=p:

!
while(p && 'ok);
return ok;

Szerokie zastosowanie znajdzie kilka dalszych prostych funkcji znakowych. truncstr()
obcina ciag znakowy:

void truncstr(char *p, int Ticzba)

{

}

/* Obcina 'liczba' znakdw z ciagu 'p' */
if (liczba < strlen(p))

plstrlen(p) - liczba]l = 0;

trim() usuwa koncowe znaki spacji (odstepu migdzywyrazowego) w ciagu:

void trim(char *tekst)

{

}

/* usuwa spacje koncowe */
char *p;

p = &tekst[strlen(tekst) - 17;
while(*p == 32 && p >= tekst)

*p,, = O'

striench() zmienia dtugos$¢ ciagu:

void strlench(char *p,int num)

{

/* Imienia dtugo$¢ ciagu, dotaczajac Tub usuwajac znaki */

if (num > 0)

memmove(p + num,p,strien(p) + 1);

else

{

Rozdziat 6. ¢ Podstawy programowania dla hakerow 253

num = 0 - num;
memmove(p,p + num,strlen(p) + 1)

}

strins() umieszcza jeden ciag w innym:

void strins(char *p, char *q)

{
/* Wstaw ciag q do ciagu p */
strlench(p,strlen(q));
strncpy(p,q,strien(q));

strchg() zastepuje wszystkie wystapienia pewnego podciagu innym podciagiem:

void strchg(char *dane, char *sl, char *s2)

{
/* Zastepuje wszystkie wystapienia sl ciagiem s2 */
char *p;
char zmienione;

do
{

zmienione = 0;

p = strstr(dane, sl);
if (p)

{

/* Usun ciag znaleziony */
strlench(p, 0 - strlen(sl));

/* Wstaw ciag */
strins(p,s2);
zmienione = 1;

1
!
while(zmienione);

}

Data i godzina

Jezyk C wyposazony jest w funkcje time(), ktéra odczytuje zegar systemowy kom-
putera i podaje informacj¢ o dacie i godzinie w postaci liczby sekund, ktéra uptyneta
od pdtnocy 1 stycznia 1970 roku. Wartos¢ ta moze zostaé zamieniona na czytelny dla
cztowieka ciag znakow za pomoca funkcji ctime():

#include <stdio.h>
#include <time.h>

int main()
{
/* Struktura do przechowywania daty i godziny, z time.h */
time t t;
/* Pobierz date i godzine systemu */
t = time(NULL);
printf("Biezaca data i godzina: %s\n",ctime(&t));

254 Hack Wars. Na tropie hakerow

Na ciag zwracany przez ctime() sktada si¢ siedem pol:
4 dzien tygodnia,
4 miesigc roku,
4 dzien miesiaca,
4 godzina,
4 minuty,
4 sekundy,
¢ rok.

Uzupetieniem jest znak nowego wiersza i koncowe 0. Poniewaz pola maja stalq sze-
rokos$¢, ciag zwracany przez ctime() idealnie nadaje si¢ do operacji wymagajacych
wyodrgbnienia elementow daty lub godziny. W ponizszym programie definiujemy
struktur¢ godzina oraz funkcje¢ pobierz godzine(), ktdérej zadaniem jest wypetnienie
struktury trescia pdl ciagu ctime():

#include <stdio.h>
#include <time.h>
#include <string.h>

struct godzina

{
int g min; /* Minuty */
int g godz; /* Godziny */
int g_sek; /* Sekundy */
b

void pobierz_godzine(struct godzina *teraz)

{
time t t;
char temp[26];
char *ts;

/* Pobierz date i godzine systemu */
t = time(NULL);

/* Przedstaw date i godzine w postaci ciagu */
strcpy (temp,ctime(&t));

/* Obetnij ostatnie pole */
temp[19] = 0;

ts = &temp[11];
/* Przeszukaj ciag i skopiuj elementy do struktury */
sscanf(ts, "%2d:%2d:%2d",&teraz->g godz,&teraz->g min,&teraz->g sek);

}

int main()

{

Rozdziat 6. ¢ Podstawy programowania dla hakerow 255

struct godzina teraz;
pobierz_godzine(&teraz);

printf("\ndest godzina %02d:%02d:%02d",&teraz.g_godz,&teraz.g_min, &teraz.g_sek);
}

Norma ANSI przewidziata rowniez funkcje konwertujaca warto$¢ zwracana przez
funkcje time() do postaci struktury. Przedstawiony ponizej przyktad zawiera deklara-
cj¢ struktury tm z nagtowka time.h:

#include <stdio.h>
#include <time.h>

int main()

{
time t t;
struct tm *tb;

/* Pobierz czas do t */
t = time(NULL);

/* Zamien warto$¢ t na strukture tb */
th = localtime(&t);

printf("\nJest godzina %02d:%02d:%02d",tb->tm hour,tb->tm min,tb->tm sec);
return (0);

}

Struktura tm (zawarta w pliku t7me.h) ma nastgpujaca postac:

struct tm
{
int tm_sec;
int tm_min;
int tm_hour;
int tm mday;
int tm_mon;
int tm_year;
int tm wday;
int tm yday;
int tm isdst;
s
(Ta struktura nie moze byC czeScig programu, jak to zasugerowano, bo jest juz
= zdefiniowana w pliku nagtowkowym. W takiej sytuacji kompilator wySwietla btad.
w Mozna ja zostawi¢ w tym miejscu z komentarzem, ktéry podatem na gérze, wzglednie
w przenie$¢ na strone 51 P.B.)

Liczniki czasu

Programy czesto korzystaja z mozliwo$ci pobrania daty i czasu z nieulotnej pamigci
RAM komputera. Norma ANSI przewiduje kilka réznych funkcji, ktore moga zostac
do tego celu wykorzystane. Pierwsza jest funkcja time(), zwracajaca liczbe sekund od
1 stycznia 1970 roku:

time_t time(time_t *timer);

256

Hack Wars. Na tropie hakerow

Funkcja wypetnia przekazana jej jako parametr zmienna typu time_t (jesli nie jest to
NULL), zwracajac t¢ sama wartos¢ rowniez jako wartos¢ wyjsciowa. Mozna wigc wywo-
tywac¢ funkcje time() z parametrem NULL i korzysta¢ z wartosci zwracanej:

#include <time.h>

void main()

{

time_t teraz;

teraz = time(NULL);
}

Funkcja asctime() zamienia struktur¢ tm na 26-znakowy ciag (przedstawiony przy
opisie funkcji ctime()):

char *asctime(const struct tm *struktura);

Funkcja ctime() zamienia wartos¢ czasu (zwracang przez time()) na 26-znakowy ciag:

#include <stdio.h>
#include <time.h>
#include <string.h>

void main()

{
time_t teraz;
char data[30];

teraz = time(NULL);
strcpy(data,ctime(&teraz));

}

Kolejna funkcja, difftime(), zwraca, liczona w sekundach, réznice migdzy dwoma
wartosciami typu time_t. Stuzy wiec do wyznaczania ilosci czasu, jaki uptynat mig-
dzy dwoma zdarzeniami, czasu wykonywania funkcji lub generowania przerw w pra-
cy programu, na przyktad:

#include <stdio.h>
#include <time.h>

void DELAY(int okres)
{

time_t pocz;

pocz = time(NULL);
while(time(NULL) < pocz + okres)

}

void main()

{

printf("\nRozpoczynam oczekiwanie... (5 sekund)");
DELAY(5);

puts("\nOczekiwanie zakonczone.");

}

Rozdziat 6. ¢ Podstawy programowania dla hakerow 257

Funkcja gntime() zamienia lokalng warto$¢ czasu time t na warto§¢ GMT o postaci
struktury tm. Dzialanie tej funkcji zalezy od ustawienia globalnej zmiennej strefy cza-
sowej. Struktura tm zostata wstepnie zdefiniowana w nagldwku time.h. Przedstawili-
$my ja kilka stron wczesniej.

struct tm

{
int tm_sec;
int tm_min;
int tm _hour;
int tm mday;
int tm_mon;
int tm_year;
int tm wday;
int tm yday;
int tm isdst;

};

Element struktury tm mday przechowuje dzien miesiaca (od 1 do 31), a tm wday — dzien
tygodnia (gdzie niedzieli odpowiada 0). Czas jest mierzony od 1900 roku. Wartosé¢
tm_isdst to znacznik, ktéry informuje o tym, czy stosowany jest czas letni. Stosowa-
ne nazwy struktury i jej elementéw moga rézni¢ si¢ w zaleznosci od kompilatora,
jednak sama struktura zasadniczo pozostaje niezmieniona.

Funkcja mktime() zamienia struktur¢ tm na wartos¢ time_t, uzupetniajac wartosci pol
tm_wday i tm_yday:

time_t mktime(struct tm *t);

W kolejnym przykladzie umozliwiamy wprowadzanie daty i uzywamy funkcji mktime()
do ustalenia dnia tygodnia. Nalezy pamietaé, ze funkcje zwiazane z czasem rozpo-
znaja wylacznie daty pdzniejsze niz 1 stycznia 1970:

#include <stdio.h>
#include <time.h>
#include <string.h>

void main()
{
struct tm tstruct;
int okay;
char data[100];
char *p;
char *wday[] =
{"niedziela", "poniedziatek", "wtorek","Sroda","czwartek", "piatek", "sobota", "przed
w rokiem 1970 - nieznany"};
do
{
okay = 0;
printf("\nWprowadz date w formacie dd/mm/rr ");
p = fgets(data, 9,stdin);
p = strtok(data,"/");

if (p!= NULL)
tstruct.tm mday = atoi(p);
else

continue;

258

Hack Wars. Na tropie hakerow

p = strtok(NULL,"/");
if (p != NULL)
tstruct.tm mon = atoi(p);
else
continue;

p = strtok(NULL, "/");

if (p != NULL)

tstruct.tm year = atoi(p);
else

continue;
okay = 1;

1
while(!okay);

tstruct.tm hour = 0;

tstruct.tm min = 0;

tstruct.tm sec = 1;

tstruct.tm isdst = -1;

/* Teraz ustalimy dzien tygodnia */

if (mktime(&tstruct) == -1)
tstruct.tm wday = 7;

printf ("Ten dzien to %s\n", wday[tstruct.tm wdayl);

}

Funkcja mktime() zapewnia réwniez wprowadzenie odpowiednich poprawek dla warto-
$ci przekraczajacych swoj dopuszczalny zakres. Mozna to wykorzysta¢ do ustalenia do-

ktadnej daty, odlegtej o n dni:

#include <stdio.h>
#include <time.h>
#include <string.h>

void main()

{

struct tm *tstruct;
time t dzisiaj;

dzisiaj = time(NULL);
tstruct = localtime(&dzisiaj);

tstruct->tm mday += 10;

mktime(tstruct);

if(tstruct->tm year>99)
tstruct->tm year%=100;

(te dwie Tinie zapobiegajg wyswietlaniu btednego roku w przypadku, gdy czas, jaki

w Uptynat od roku 1900 jest dtuzszy od 99 lat P.B.)

printf("Za dziesie¢ dni bedzie %02d/%02d/%02d\n",tstruct->tm mday,tstruct->tm mon +

w 1, tstruct->tm year);

}

