
Wydawnictwo Helion

ul. Chopina 6

44-100 Gliwice

tel. (32)230-98-63

e-mail: helion@helion.pl

PRZYK£ADOWY ROZDZIA£PRZYK£ADOWY ROZDZIA£

IDZ DOIDZ DO

ZAMÓW DRUKOWANY KATALOGZAMÓW DRUKOWANY KATALOG

KATALOG KSI¥¯EKKATALOG KSI¥¯EK

TWÓJ KOSZYKTWÓJ KOSZYK

CENNIK I INFORMACJECENNIK I INFORMACJE

ZAMÓW INFORMACJE
O NOWOŒCIACH

ZAMÓW INFORMACJE
O NOWOŒCIACH

ZAMÓW CENNIKZAMÓW CENNIK

CZYTELNIACZYTELNIA

FRAGMENTY KSI¥¯EK ONLINEFRAGMENTY KSI¥¯EK ONLINE

SPIS TREŒCISPIS TREŒCI

DODAJ DO KOSZYKADODAJ DO KOSZYKA

KATALOG ONLINEKATALOG ONLINE

Hack Wars. Tom 1.

Na tropie hakerów
Autor: John Chirillo

T³umaczenie: Pawe³ Koronkiewicz, Leonard Milcin

ISBN: 83-7197-599-6

Tytu³ orygina³u:

Format: B5, stron: 736

Zawiera CD-ROM

Hack Attacks Revealed: A Complete

Reference with Custom Security Hacking Toolkit

Ekspert w dziedzinie zabezpieczeñ, John Chirillo, zachêca Czytelnika do poznania

mrocznego i tajemniczego œwiata hakerów. Czerpi¹c z bogatego doœwiadczenia we

wspó³pracy z firmami Fortune 1000, Chirillo przedstawia ró¿ne sposoby wykorzystania

przez hakerów luk w zabezpieczeniach sieci oraz metody rozpoznawania tego rodzaju

zagro¿eñ. Uzupe³nieniem jest szczegó³owy opis pakietu TigerBox, umo¿liwiaj¹cego

hakerom przeprowadzanie skutecznych w³amañ, a administratorowi sieci — zyskanie

pewnoœci, ¿e jest w³aœciwie chroniona.

W tej prowokacyjnej ksi¹¿ce znajdziemy:

"

"

"

"

Opis protoko³ów sieciowych i technologii komunikacyjnych z punktu widzenia

hakera

Pe³ny opis stosowanych metod w³amañ, wyjaœniaj¹cy, jak dzia³aj¹ hakerzy,

crackerzy, "phreaks" i cyberpunki

Narzêdzia do gromadzenia informacji i skanowania sieci, umo¿liwiaj¹ce wykrycie

i przeanalizowanie przypadków naruszenia bezpieczeñstwa systemu

Dok³adne instrukcje, jak pos³ugiwaæ siê pakietem typu TigerBox

i wykorzystywaæ go do wykrywania ataków.

ZNAJDZ KSI¥¯KÊZNAJDZ KSI¥¯KÊ

LISTA BESTSELLERÓWLISTA BESTSELLERÓW

INFORMACJE
O WYDAWNICTWIE HELION

INFORMACJE
O WYDAWNICTWIE HELION

http://helion.pl/view254w
http://helion.pl/page254w~zamow_katalog.htm
http://helion.pl/page254w~katalog.htm
http://helion.pl/add254w~hacwa1
http://helion.pl/page254w~emaile.cgi
http://helion.pl/page254w~cennik.htm
http://helion.pl/page254w~online.htm
mailto:helion@helion.pl
http://www.amazon.com/exec/obidos/ASIN/047141624X
http://helion.pl/view254w~hacwa1
http://www.amazon.com/exec/obidos/ASIN/047141624X
http://helion.pl/page254w~searchdv.fcgi
http://helion.pl/page254w~top.htm
http://helion.pl/page254w~owyd.fcgi

O Autorze ...9

Wstęp ..11

Rozdział 1. Protokoły komunikacyjne ...15
Krótka historia Internetu ...15

IP — Internet Protocol ..16

Datagramy IP — transportowanie, rozmiar i fragmentacja ..18

Adresy IP, klasy i maski podsieci ...21

VLSM — krótka instrukcja tworzenia podsieci i odczytywania adresu IP22

ARP/RARP — rozpoznawanie adresu sprzętowego...31

ARP — transportowanie, budowa nagłówka pakietu ...31

RARP — transportowanie, dokonywanie transakcji ..33

Usługa RARP..33

TCP — Transmission Control Protocol ..33

Sekwencje oraz okna...34

Budowa nagłówka pakietu TCP..35

Porty, końcówki, nawiązywanie połączenia ...37

UDP — User Datagram Protocol ..37

Budowa i transportowanie datagramów UDP...38

Multiplexing, demultiplexing oraz porty UDP ...39

ICMP — Internet Control Message Protocol..39

Budowa i transportowanie pakietów ICMP..39

Komunikaty ICMP, wyszukiwanie maski podsieci ..40

Przykłady datagramów ICMP...42

Rozdział 2. NetWare oraz NetBIOS ...43
NetWare — wprowadzenie ...43

IPX — Internetwork Packet Exchange ...44

SPX — Sequenced Packet Exchange ...48

Budowa i przykłady nagłówków SPX ..49

Zarządzanie połączeniami, przerywanie ...49

Algorytm Watchdog..50

Korekcja błędów, ochrona przed zatorami ...51

NetBIOS — wprowadzenie...51

Konwencje nazywania, przykładowe nagłówki..51

Usługi NetBIOS..52

4 Hack Wars. Na tropie hakerów

NetBEUI — wprowadzenie ..53

Związki z NetBIOS...54

Okna i liczniki...54

Rozdział 3. Porty standardowe oraz związane z nimi usługi..................................55
Przegląd portów...55

Porty TCP oraz UDP...56

Luki w bezpieczeństwie związane z portami standardowymi57

Niezidentyfikowane usługi..69

Rozdział 4. Techniki rozpoznania i skanowania ...99
Rozpoznanie ..99

Katalog Whois ..100

PING ...102

Serwisy wyszukiwawcze ..105

Social Engineering ..106

Skanowanie portów...107

Techniki skanowania portów ..107

Popularne skanery portów...108

Przykładowy skan ...120

Rozdział 5. Niezbędnik hakera..127
Pojęcia związane z siecią ..127

Model warstwowy — Open Systems Interconnection Model127

Rodzaje okablowania — przepustowość oraz maksymalna długość........................129

Konwersje pomiędzy postaciami dwójkowymi, dziesiątkowymi

i szesnastkowymi liczb ...129

Funkcje wydajnościowe protokołów ..140

Technologie sieciowe..141

Adresowanie MAC i kody producentów ..141

Ethernet ...141

Token Ring..148

Sieci Token Ring i mostkowanie trasy nadawcy ..149

Sieci Token Ring i translacyjne mostkowanie trasy nadawcy..................................153

Sieci FDDI ..155

Protokoły wybierania tras..157

Protokoły wektorowo-odległościowe i protokoły stanów przyłączy........................157

Protokół RIP..159

Protokół IGRP...160

Protokół RTMP sieci Appletalk..161

Protokół OSPF ..161

Ważne polecenia ...162

append ...162

assign...164

attrib ..164

backup ...165

break..166

chcp ...166

chdir (cd) ...167

chkdsk ...168

cls ..168

command...168

comp..169

copy...170

ctty...171

Spis treści 5

date..171

del (erase)..172

dir ..172

diskcomp ...173

diskcopy ..174

exe2bin..174

exit...175

fastopen ...175

fc ...175

fdisk...177

find ..177

format..178

graftabl ..179

Graphics ..179

join ..180

keyb...181

label...182

mkdir (md) ..182

mode..183

more ..186

nlsfunc...186

path..187

print ...187

prompt ...188

recover...189

rename (ren) ..190

replace ...190

restore..191

rmdir (rd)...192

select ...192

set ..193

share ..194

sort...194

subst ..195

sys ...196

time ...196

tree...197

type..197

ver ...197

verify ...198

vol ...198

xcopy...198

Rozdział 6. Podstawy programowania dla hakerów ...201
Język C ..201

Wersje języka C ..202

Klasyfikowanie języka C ..203

Struktura języka C...203

Komentarze ...205

Biblioteki...205

Tworzenie programów ..205

Kompilacja..205

Typy danych..206

Operatory ..210

6 Hack Wars. Na tropie hakerów

Funkcje..212

Polecenia preprocesora C..216

Instrukcje sterujące ...219

Wejście-wyjście ..223

Wskaźniki ...226

Struktury ...229

Operacje na plikach...234

Ciągi ..244

Obsługa tekstu...250

Data i godzina ...253

Pliki nagłówkowe..259

Debugowanie programu..259

Błędy wartości zmiennoprzecinkowych ...260

Obsługa błędów ..260

Konwersja typów zmiennych..263

Prototypy...265

Wskaźniki do funkcji ..266

Sizeof ..267

Przerwania...267

Funkcja signal() ..270

Dynamiczne alokowanie pamięci ...271

Funkcja atexit() ...273

Wydajność...274

Przeszukiwanie katalogów..275

Dostęp do pamięci rozbudowanej ...278

Dostęp do pamięci rozszerzonej ...282

Tworzenie programów TSR..290

Rozdział 7. Metody przeprowadzania ataków ..319
Streszczenie przypadku ...319

„Tylne wejścia” (backdoors) ...320

Zakładanie „tylnego wejścia” ...322

Typowe techniki „tylnego wejścia” ..323

Filtry pakietów ..323

Filtry stanowe..328

Bramy proxy i poziomu aplikacji ...333

Przeciążanie (flooding) ...333

Zacieranie śladów (log bashing) ...342

Zacieranie śladów aktywności online ...343

Unikanie rejestrowania wciśnięć klawiszy ...344

Bomby pocztowe, spam i podrabianie korespondencji ...355

Łamanie haseł (password cracking) ..357

Deszyfrowanie i krakowanie...357

Zdalne przejęcie kontroli...362

Krok 1. Rozpoznanie ..363

Krok 2. Przyjazna wiadomość email ..363

Krok 3. Kolejna ofiara ..364

Monitorowanie komunikacji (sniffing) ...366

Podrabianie IP i DNS (spoofing) ..374

Studium przypadku ...375

Konie trojańskie ..382

Infekcje wirusowe ...388

Wardialing...391

„Złamanie” strony WWW (Web page hack)...392

Spis treści 7

Krok 1. Rozpoznanie ..394

Krok 2. Uszczegółowienie danych ...394

Krok 3. Rozpoczęcie właściwego ataku ...397

Krok 4. Poszerzenie wyłomu ..397

Krok 5. „Hakowanie” strony...397

Rozdział 8. Bramy, routery oraz demony usług internetowych............................401
Bramy i routery ...401

3Com...402

Ascend/Lucent ..409

Cabletron/Enterasys ..416

Cisco ...423

Intel ...431

Nortel/Bay...438

Demony serwerów internetowych...442

Apache HTTP ...443

Lotus Domino ...445

Microsoft Internet Information Server..446

Netscape Enterprise Server ...448

Novell Web Server..451

O’Reilly Web Site Professional ..454

Rozdział 9. Systemy operacyjne ...459
UNIX...460

AIX ...462

BSD...470

HP-UX ..484

IRIX ..494

Linux ...497

Macintosh..522

Microsoft Windows ..527

Novell NetWare ..543

OS/2 ..552

SCO...566

Solaris ...568

Rozdział 10. Serwery proxy i zapory firewall..573
Bramy międzysieciowe ...573

BorderWare...573

FireWall-1 ...577

Gauntlet...581

NetScreen..585

PIX ..589

Raptor..596

WinGate ..599

Rozdział 11. TigerSuite — kompletny pakiet narzędzi do badania i ochrony sieci ...605
Terminologia ...605

Wprowadzenie...607

Instalacja ...610

Moduły ..613

Moduły grupy System Status ..614

TigerBox Tookit ..619

TigerBox Tools ...619

TigerBox Scanners..624

8 Hack Wars. Na tropie hakerów

TigerBox Penetrators ..626

TigerBox Simulators ...627

Przykładowy scenariusz włamania..628

Krok 1. Badanie celu...629

Krok 2. Rozpoznanie ..631

Krok 3. Socjotechnika...633

Krok 4. Atak..635

Podsumowanie ..635

Dodatek A Klasy adresów IP oraz podział na podsieci.......................................637

Dodatek B Porty standardowe ...641

Dodatek C Pełna lista portów specjalnych ...645

Dodatek D Porty usług niepożądanych ...685

Dodatek E Zawartość płyty CD ...691

Skorowidz...701

Rozdział 6.

Język C

Dla każdego hakera, młodego czy starego, mniej lub bardziej doświadczonego, zna-

jomość języka C jest jednym z fundamentów wiedzy. Niemal wszystkie narzędzia

i programy, stosowane w trakcie analiz sieci i włamań, powstają właśnie w tym języ-

ku. Również w niniejszej książce większość przedstawianego kodu to właśnie kod

źródłowy w języku C. Programy te można modyfikować, dostosowywać do własnych

potrzeb i odpowiednio kompilować.

W pracy nad niniejszym rozdziałem wykorzystano obszerne fragmenty pracy guru
programowania Matthew Proberta. Mają one pełnić funkcję wprowadzenia do pro-
gramowania w języku C i umożliwić stosowanie przedstawianych w książce (i załą-
czonych na CD-ROM-ie) listingów programów. Pełny kurs języka znajdziesz w nie-
jednej książce wydawnictwa Helion.

Język C wyróżniają następujące cechy, które omawiamy niżej.

���� Blokowe konstrukcje sterowania wykonywaniem programu (typowe dla

większości języków wysokiego poziomu).

���� Swobodne operowanie podstawowymi obiektami „maszynowymi” (takimi jak

bajty) i możliwość odwoływania się do nich przy użyciu dowolnej, wymaganej

w danej sytuacji, perspektywy obiektowej (typowe dla języków asemblerowych).

���� Możliwość wykonywania operacji zarówno wysokiego poziomu (na przykład

arytmetyka zmiennoprzecinkowa), jak i niskiego poziomu (zbliżonych

do instrukcji języka maszynowego), co umożliwia tworzenie kodu wysoce

zoptymalizowanego bez utraty jego przenośności.

202 Hack Wars. Na tropie hakerów

Przedstawiony w niniejszym rozdziale opis języka C bazować będzie na funkcjach

oferowanych przez większość kompilatorów dla komputerów PC. Powinien dzięki

temu umożliwić rozpoczęcie tworzenia prostych programów osobom nieposiadają-

cym szerokiej wiedzy o języku (uwzględnimy między innymi funkcje zapisane w pa-

mięci ROM i funkcje DOS-u).

Przyjmujemy założenie, że masz, drogi Czytelniku, dostęp do kompilatora C i od-
powiedniej dokumentacji funkcji bibliotecznych. Programy przykładowe powstały
w Turbo C firmy Borland; większość elementów niestandardowych tego narzędzia
uwzględniono również w późniejszych edycjach Microsoft C.

Wersje języka C

W pierwotnej edycji języka C (jeszcze przed publikacją Kernighana i Ritchie’ego,

The C Programming Language, Prentice-Hall 1988 (polskie wydanie: Język ANSI C,

Wydawnictwa Naukowo-Techniczne 1994)) zintegrowane operatory przypisania (+=,

= itd.) definiowane były odwrotnie (tj. =+, = itd.). Znakomicie utrudniało to inter-

pretację wyrażeń takich jak:

����

co mogłoby znaczyć

���������

lub

�����������

Ritchie szybko zauważył dwuznaczność takiego zapisu i zmodyfikował go do postaci

znanej dzisiaj (+=, *= itd.). Mimo to wciąż stosowanych jest wiele odmian będących

rodzajem wypośrodkowania między pierwotną wersją języka C Kernighana i Ritchie’ego

a językiem ANSI C. Różnice między nimi dotyczą przede wszystkim:

���� wprowadzenia prototypów funkcji i zmiany preambuły definicji funkcji,

aby dostosować ją do stylu prototypów,

���� wprowadzenia znaku wielokropka (...) do oznaczenia list argumentów o zmiennej

długości,

���� wprowadzenia słowa kluczowego ���� (dla funkcji, które nie zwracają wartości)
i typu ������ dla ogólnych zmiennych wskaźnikowych,

���� wprowadzenie w preprocesorze mechanizmów scalania ciągów, wklejania

elementu (token-pasting) i zamiany na ciąg (string-izing),

���� dodanie w preprocesorze translacji „trygrafów” (trigraph) — trójznakowych

sekwencji reprezentujących znaki specjalne,

���� dodanie w preprocesorze dyrektywy ��	
��
 i formalizacja pseudofunkcji

�
��
	
���,

Rozdział 6. ���� Podstawy programowania dla hakerów 203

���� wprowadzenie ciągów i znaków wielobajtowych, zapewniających obsługę

języków narodowych,

���� wprowadzenie słowa kluczowego ����
� (jako uzupełnienie słowa ������
�,
stosowane w deklaracjach liczb całkowitych) i jednoargumentowego

operatora plus (�).

Klasyfikowanie języka C

Szerokie możliwości języka C, dopuszczenie bezpośredniego operowania na adresach

i danych w pamięci oraz strukturalne podejście do programowania sprawiają, że język

ten klasyfikuje się jako „język programowania średniego poziomu”. Znajduje to wyraz

w mniejszej liczbie gotowych rozwiązań niż w językach wysokiego poziomu, takich

jak BASIC, ale wyższym poziomie strukturalnym niż niskopoziomowy Assembler.

Słowa kluczowe

Pierwotna edycja języka C definiuje 27 słów kluczowych. Komitet ANSI dodał do

nich 5 nowych. Wynikiem są dwa standardy języka, choć norma ANSI przejęła więk-

szość elementów od Kerninghana i Ritchie’ego. Oto lista:

�	
� ��	
�� ��
 �
�	�

���� ���� ���� ���
��

���� ��	� �����
��
������

���� ��
��� ��
	�� 	����

����
 ����
 ����
 	�������

���
��	� ��� ������ ����

����	�
 ��
� ������ ����
���

�� �� �
�
�� �����

Warto zwrócić uwagę, że niektóre kompilatory C wprowadzają dodatkowe słowa klu-

czowe, specyficzne dla środowiska sprzętowego. Warto zapoznać się z nimi.

Struktura języka C

Język C wymaga programowania strukturalnego. Oznacza to, że na program składa

się pewna grupa nawzajem wywołujących się bloków kodu. Dostępne są różnorodne

polecenia służące do konstruowania pętli i sprawdzania warunków:

������������������������������

Blok programu w języku C ujmowany jest w nawiasy klamrowe (��). Może on być

kompletną procedurą, nazywaną funkcją lub częścią kodu funkcji. Przyjrzyjmy się

przykładowi:

204 Hack Wars. Na tropie hakerów

�������� !�
"
������ #
��
���!#
$

Instrukcje wewnątrz nawiasów klamrowych wykonane zostaną tylko wtedy, gdy speł-

niony zostanie warunek ������.

Jako kolejny przykład przedstawimy pełny blok kodu funkcji, zawierający wewnątrz

blok pętli:

��
�%&'()��
"
����
���#

����
��"
��������
���*+�,������������
����������	����!���� !�*�#
����������*-�*�.��#
��$
������������!�//���0� !�#
����
	�����#
$

Zwróćmy uwagę, że każdy wiersz instrukcji zakończony jest średnikiem, o ile nie jest

sygnałem początku bloku kodu (w takim przypadku kolejnym znakiem jest nawias

klamrowy). Język C rozpoznaje wielkość liter, ale nie bierze pod uwagę białych zna-

ków. Odstępy między poleceniami są pomijane, stąd konieczność użycia średnika,

aby oznaczyć koniec wiersza. Tego rodzaju podejście powoduje, że następujące pole-

cenia interpretowane są jako identyczne:

����!#
����������!#
��!#

Ogólna postać programu w języku C jest następująca:

���� instrukcje preprocesora kompilacji,

���� globalne deklaracje danych.

���� deklaracje i definicje funkcji (włączając w to zawartość programu):

��������	�
����������
��������������
"
���

����	��
$
��������	�
��� ����
��������������
"
���

����	��
$
��������	�
���1����
��������������
"
���

����	��
$
2

Rozdział 6. ���� Podstawy programowania dla hakerów 205

��������	�
���
����
��������������
"
���

����	��
$

Komentarze

Podobnie jak większość języków, C pozwala umieszczać w kodzie programu komen-

tarze. Ich ogranicznikami są symbole �� i ��:

34�'��5��
�������������
�������56���	�7�43

(Równie często korzysta się z komentarzy jednoliniowych, otrzymywanych poprzez

sekwencję //, np.:

���33'��
�8�5��
�������������
������92:2�

Biblioteki

Programy w języku C kompiluje się i łączy z funkcjami bibliotecznymi, dostarcza-

nymi wraz z kompilatorem. Na biblioteki składają się funkcje standardowe, których

działanie zdefiniowane zostało w normie ANSI. Ich powiązanie z konkretnym kom-

pilatorem zapewnia dostosowanie do platformy sprzętowej. Wynika stąd, że standardowa

funkcja biblioteczna �	������ działa tak samo w systemach DEC VAX i IBM PC,

choć różni się jej, zapisany w bibliotece, kod maszynowy. Programista C nie musi za-

głębiać się w zawartość bibliotek, wymagana jest jedynie umiejętność ich stosowania

i znajomość działania funkcji, które pozostają niezmienne na każdym komputerze.

Tworzenie programów

Kompilacja

Zanim zajmiemy się funkcjami, poleceniami, sekwencjami i innymi zaawansowanymi

zagadnieniami, przyjrzyjmy się praktycznemu przykładowi, w którym doprowadzimy

do skompilowania kodu. Kompilowanie programów C jest stosunkowo prostą czyn-

nością, jednak różni się zależnie od stosowanego kompilatora. Kompilatory wyposażone

w menu umożliwią skompilowanie, skonsolidowanie i uruchomienie programu jed-

nym wciśnięciem klawisza. Podchodząc jednak do zagadnienia możliwie uniwersal-

nie i tradycyjnie, przeprowadzimy poniżej całą procedurę w oparciu o wiersz poleceń.

W dowolnym edytorze wprowadzamy poniższy fragment kodu i zapisujemy plik jako

przyklad.c:

34
�������;���������	����
�
���
���
43

206 Hack Wars. Na tropie hakerów

<����	����
���2�0
�����������
"
������
���*=����>+�*��#
$

Kolejnym krokiem jest skompilowanie kodu do postaci pliku programu — dopiero
wtedy można będzie go uruchomić (czy też wykonać). W wierszu poleceń w tym sa-
mym katalogu, w którym zapisaliśmy plik przyklad.c, wprowadzamy następujące po-
lecenie kompilacji:

�����������2�

Nie wolno zapominać, że składnia polecenia kompilacji zależy od kompilatora. Nasz
przykład opiera się na standardzie języka C. Współcześnie jednak popularne jest sto-
sowanie składni wywodzącej się z kompilatora GNU C:

������������2�

Po wykonaniu takiego polecenia nasz kod jest już skompilowany i ma postać pliku
programu, który możemy uruchomić. Wynik jego działania łatwo wydedukować
z prostego kodu:

=����>
9�������������
�����
��	�

To wszystko! Kompilowanie małych programów w C nie jest trudne, należy jedynie
mieć świadomość szkodliwych niekiedy efektów ich działania. Programy przedsta-
wiane na stronach tej książki i załączone na CD-ROM-ie są oczywiście znacznie bar-
dziej skomplikowane, jednak zasady pozostają te same.

Typy danych

W języku C wyróżnia się cztery podstawowe typy danych: znakowy, całkowity,
zmiennoprzecinkowy i nieokreślony. Odpowiadają im słowa kluczowe: ��
	, ���,
���
� i ����. Dalsze typy danych tworzy się na tej podstawie, dodając modyfikatory:
����
� (ze znakiem), ������
� (bez znaku), ���� (długa) i ���	� (krótka). Modyfika-
tor ����
� jest elementem domyślnym, co sprawia, że jego użycie może się okazać
konieczne jedynie w wypadku gdy zastosowano przełącznik kompilacji nakazujący
domyślne korzystanie ze zmiennych bez znaku. Rozmiar każdego typu danych zależy
od platformy sprzętowej, jednak norma ANSI wyznacza pewne zakresy minimalne,
zestawione w tabeli 6.1.

W praktyce tak określone konwencje oznaczają, że typ danych ��
	 nadaje się najle-
piej do przechowywania zmiennych typu znacznikowego, takich jako kody stanu,
o ograniczonym zakresie wartości. Można również korzystać z typu ���. Gdy jednak
zakres wartości nie przekracza 127 (lub 255 dla ������
����
), każda deklarowana
w ten sposób zmienna przyczynia się do niepotrzebnego obciążania pamięci.

Natomiast trudniejsze jest pytanie o to, z którego typu liczb rzeczywistych korzystać
— ���
�, ��� �
 czy ����� ��� �
. Gdy wymagana jest dokładność, na przykład
w aplikacji stosowanej w księgowości, instynktownie powinniśmy użyć typu �������� �
,

Rozdział 6. ���� Podstawy programowania dla hakerów 207

Tabela 6.1. Rozmiary i zakresy typów danych języka C

Typ Rozmiar Zakres

���� 8 –128 do 127

	������������ 8 0 do 255

��
 16 –32 768 do 32 767

	����������
 16 0 do 65 535

�������
 32 –2 147 483 648 do 2 147 483 647

	���������������
 32 0 do 4 294 967 295

����
 32 precyzja 6-cyfrowa

��	
�� 64 precyzja 10-cyfrowa

�������	
�� 80 precyzja 10-cyfrowa

wiąże się to jednak z wykorzystaniem przez każdą zmienną 10 bajtów. Obliczenia na
liczbach rzeczywistych nie są tak dokładne jak na liczbach całkowitych, warto więc
zawsze rozważyć użycie typu ��� i „obejście” problemu. Typ danych ���
� nie jest
zbyt dobry, gdyż jego 6-cyfrowa precyzja nie zapewnia dokładności, na której zawsze
będziemy mogli polegać. Ogólną zasadą jest korzystanie z typów całkowitych tak
szeroko, jak tylko jest to możliwe, a gdy pojawia się konieczność użycia liczb rze-
czywistych, wprowadzenie typu ��� �
.

Deklarowanie zmiennej

Każda zmienna musi zostać zadeklarowana przed użyciem. Ogólną postacią deklara-

cji zmiennej jest:

����
����#

Aby więc przykładowo zadeklarować zmienną � typu ���, przeznaczoną do przecho-
wywania wartości z zakresu od –32 768 do 32 767, użyjemy instrukcji:

��
��#

Ciągi znakowe deklarować można jako tabele znaków:

�����
����?��	���������
���@#

Deklaracja ciągu o nazwie �
!"��#� i długości 30 znaków, wyglądać będzie następująco:

�������������?A!@#

Tablice danych innych typów mogą mieć więcej niż jeden wymiar. Oto deklaracja

dwuwymiarowej tablicy liczb całkowitych:

��
��? !@? !@#

Elementy tablicy wywołujemy jako:

�?!@?!@
�?!@? @
�?�@?�@

208 Hack Wars. Na tropie hakerów

Wyróżnia się trzy poziomy dostępu do zmiennych: lokalny, na poziomie modułu

i globalny. Zmienna deklarowana wewnątrz bloku kodu będzie dostępna wyłącznie

dla instrukcji wewnątrz tego bloku. Zmienna deklarowana poza blokami kodu funkcji,

ale poprzedzona modyfikatorem ��
���, będzie dostępna wyłącznie instrukcjom we-

wnątrz modułu kodu źródłowego. Zmienna deklarowana poza blokami kodu funkcji

i niepoprzedzona modyfikatorem będzie dostępna dla dowolnych instrukcji w dowol-

nym module programu. Na przykład:

��
�
���#
�
�
�����
��#

�������������7����������	���5�����������;����
�����������5�����
�B�����������5�
5��������
�������������	���B���
�����6���
���8������
���������
�������B����
����5�	5��5C�5������
�����	����	���5����
	��2�D
��
����	����CE������8�������
6����
�����;�����������	56������92:2�
"
����
��#
����
��#
$

�	���5����
"
��34�F�������������������������5��
��G����!�43
�����������!�
��"
������
�
#
��������
���!#�
���1!#�
HH�
����������
���*+�=�����,����*�#
��$

$

W powyższym przykładzie zmienna �
� jest dostępna dla wszystkich, kompilowa-

nych jako jeden program, modułów kodu źródłowego. Zmienna
 jest osiągalna dla
wszystkich instrukcji w funkcjach �
���� i ���#�$

��, ale pozostaje niewidoczna
z poziomu innych modułów. Zmienne � i % są dostępne wyłącznie instrukcjom we-

wnątrz funkcji �
����. Z kolei zmienna może być użyta wyłącznie przez instrukcje

wewnątrz bloku kodu po instrukcji ��.

Jeżeli drugi blok kodu faktycznie ma skorzystać ze zmiennej �
�, wymagane będzie

umieszczenie w nim deklaracji zmiennej globalnej
��
	�:

��
������
�
���#

�	���5�
��
"
$

Język C nie stawia szczególnych przeszkód w przypisywaniu do siebie różnych typów

danych. Przykładowo możemy zadeklarować zmienną typu ��
	, co spowoduje przy-
pisanie do przechowywania jej wartości jednego bajtu danych. Można podjąć próbę

przypisania do niej wartości spoza tego zakresu:

Rozdział 6. ���� Podstawy programowania dla hakerów 209

�����������
"

����I!!!#

$

Zmienna � może przechowywać wartości z zakresu od –127 do 128, a więc wartość 5000
nie zostanie przypisana. � przyjmie jednak wartość 136.

Potrzeba przypisania różnych typów danych nie jest niczym oryginalnym. Aby po-

wstrzymać kompilator od generowania ostrzeżeń o takich operacjach, można skorzy-

stać z instrukcji konwersji (cast statement), informując kompilator o tym, że operacja

wykonywana jest świadomie. Instrukcję taką budujemy, umieszczając przed zmienną

lub wyrażeniem nazwę typu danych ujętą w nawiasy:

�����������
"
������
��#
����
��#

������ !!�3�1I#

���������
��#
$

Operacja rzutowania ����� informuje kompilator o konieczności konwersji wartości

zmiennej zmiennoprzecinkowej � do liczby całkowitej, zanim ta zostanie przypisana

do zmiennej %.

Parametry formalne

Funkcja w języku C może przyjmować parametry przekazywane przez funkcję wy-

wołującą. Parametry te deklaruje się podobnie jak zmienne, podając ich nazwy we-

wnątrz towarzyszących nazwie funkcji nawiasów:

��
�JKLM���
������
���
"
��34�M��GE�������
���������8����������������
����43
����
	�����4���#
$

�����������
"
����
��#
����
�
#
����
��#

������I#
��
���N#
������JKLM���
�#

������
��*-�������-���G������6�-�+�*���
���#
$

210 Hack Wars. Na tropie hakerów

Modyfikatory dost�pu

Stosuje się dwa modyfikatory dostępu: ����� i ���
���
. Wartość zmiennej zadekla-

rowanej jako ����� nie może zostać zmieniona przez program, wartość zmiennej za-

deklarowanej jako ���
���
 może zostać zmieniona przez program. Dodatkowo, za-

deklarowanie zmiennej jako ���
���
 uniemożliwia kompilatorowi zaalokowanie jej

do rejestru i ogranicza przeprowadzaną na niej optymalizację.

Typy klas przechowywania zmiennych

Język C przewiduje cztery rodzaje przechowywania zmiennych:
��
	�, ��
���,
���
i 	
����
	. Typ
��
	� umożliwia modułowi kodu źródłowego dostęp do zmiennej

zadeklarowanej w innym module. Zmienne ��
��� dostępne są wyłącznie z poziomu

bloku kodu, w którym zostały zadeklarowane. Dodatkowo, jeżeli zmienna ma zasięg

lokalny, zachowuje swoją wartość między kolejnymi wywołaniami bloku kodu.

Zmienne rejestrowe (
����
) są, gdy tylko jest to możliwe, przechowywane w reje-

strach procesora. Zapewnia to najszybszy dostęp do ich wartości. Typ
��� stosuje się
wyłącznie w odniesieniu do zmiennych lokalnych. Nakazuje on zachowywanie war-

tości zmiennej lokalnej. Ponieważ jest to modyfikator domyślny, rzadko można spo-

tkać go w programach.

Operatory

Operatory to elementy kodu, które nakazują wykonanie obliczeń na zmiennych. W ję-

zyku C dostępne są następujące:

. adres,

4 pośredniość,

H plus jednoargumentowy,

� minus jednoargumentowy,

O dopełnienie bitowe,

> negacja logiczna,

HH jako prefiks — preinkrementacja, jako sufiks — postinkrementacja,

PP jako prefiks — predekrementacja, jako sufiks — postdekrementacja,

H dodawanie,

� odejmowanie,

4 mnożenie,

3 dzielenie,

- reszta z dzielenia (modulo),

�� przesunięcie w lewo,

00 przesunięcie w prawo,

. bitowa operacja AND,

Rozdział 6. ���� Podstawy programowania dla hakerów 211

/ bitowa operacja OR,

Q bitowa operacja XOR,

.. logiczna operacja AND,

// logiczna operacja OR,

� przypisanie,

4� przypisanie iloczynu,

3� przypisanie ilorazu,

-� przypisanie reszty (modułu),

H� przypisanie sumy,

�� przypisanie różnicy,

��� przypisanie przesunięcia w lewo,

00� przypisanie przesunięcia w prawo,

.� przypisanie wyniku bitowej operacji AND,

/� przypisanie wyniku bitowej operacji OR,

Q� przypisanie wyniku bitowej operacji XOR,

� mniejsze niż,

0 większe niż,

�� mniejsze lub równe,

0� większe lub równe,

�� równe,

>� różne od,

2 bezpośredni selektor składnika,

�0 pośredni selektor składnika,

��R���S�� jeżeli
 to prawda, to �, w przeciwnym razie %&

?�@ definiowanie tablic,

�� nawiasy oddzielają warunki i wyrażenia,

222 wielokropek wykorzystuje się w listach parametrów formalnych prototypów

funkcji do deklarowania zmiennej liczby parametrów lub parametrów

zmiennych typów.

Aby zilustrować sposób korzystania z podstawowych operatorów, przyjrzyjmy się

krótkiemu programowi:

�����������
"
����
��#
����
�
#
����
��#
������I#���349������������������5������
�B���I43
��
����31#�349������������������5�
����
�B���������������5�������143
������
41#��349������������������5������
�B���
������8���5�������143

��������������34F��������������������
��C����C����
�BE�5����43

212 Hack Wars. Na tropie hakerów

�����	
��*M���������5��
�������
�*�#
������
�����	
��*M���������5��
����������
�*�#
$

Typowym sposobem zwiększenia wartości zmiennej o 1 jest wiersz:

������H�

Język C dostarcza operatora inkrementacji, wystarczy więc napisać:

�HH

W podobny sposób korzystamy z operatora dekrementacji, czyli zmniejszania war-

tości o 1:

���

Pozostałe operatory matematyczne wykorzystujemy podobnie. Warto jednak pamię-

tać o wprowadzanych przez język C możliwościach zapisu skróconego:

Zapis typowy Zapis w j+zyku C

������H� �HH

�������� ���

������4�1 ��4��1

������3�� ��3���

������-�I ��-��I

Funkcje

Funkcje to procedury kodu źródłowego tworzące program w języku C. Ich ogólną po-

stacią jest:

����	�
������
�������
�	�����
��������������
"
���

����	��
$

���������	�
 to typ zwracanej przez funkcję wartości: ��
	, ���, ��� �
, ���� itp.
Kod wewnątrz funkcji C pozostaje niewidoczny dla innych funkcji C. Nie można wy-

konywać skoków z jednej funkcji do wnętrza innej. Funkcje mogą jedynie wywoły-

wać inne funkcje. Nie wolno również definiować funkcji wewnątrz innych funkcji.

Definicja musi zostać umieszczona bezpośrednio na poziomie modułu kodu.

Parametry przekazywane są do funkcji jako wartości lub jako odwołania (wskaźniki).

Gdy parametr jest przekazywany jako wartość, funkcja otrzymuje kopię tej wartości.

Parametr przekazywany jako odwołanie jest jedynie wskaźnikiem do właściwego pa-

rametru. Pozwala to na zmianę jego wartości z poziomu wywołanej funkcji. W poniż-

szym przykładzie przekazujemy dwa parametry jako wartość do funkcji ���#�$

��,

Rozdział 6. ���� Podstawy programowania dla hakerów 213

która następnie podejmuje próbę zmiany wartości przekazanych zmiennych. Drugim

krokiem jest przekazanie tych samych parametrów do funkcji ���#�$
 ��, która rów-
nież podejmuje próbę zmiany wartości zmiennych:

<����	�����
���2�0

��
��	���5�����
������
���
"
��34�T	���5������5�	5������������
���5�������
�B����������43

��������4�1#
��������4�1#

������
���*+�,��
�BE������	���5�����-�2�,��
�BE������	���5�����-�*�����#

����
	�����#
$

��
��	���5�
���
�4�����
�4��
"
��34�T	���5������5�	5������������
���5��������;������������43

��4����4��4�1#
��4����4��4�1#

������
���*+�,��
�BE������	���5�
���-�2�,��
�BE������	���5�
���-�*�4��4��#

����
	���4��#
$

�����������
"
����
��#
����
��#
����
��#

������I#
������N#

�������	���5�������#
�������	���5�
�.��.��#

������
���*+�,��
�BE���-������
�BE���-������
�BE���-�*�������#
$

���#�$
 �� nie zmienia wartości otrzymanych parametrów. Modyfikowana jest za-

wartość wskazywanych parametrami adresów pamięci. O ile ���#�$

�� otrzymuje

z funkcji �
���� wartości zmiennych � i %, ���#�$
 �� otrzymuje z funkcji �
���� ich
adresy w pamięci.

Przekazywanie tablicy do funkcji

Następujący program przekazuje do funkcji tablicę, a funkcja nadaje wartości ele-

mentom tablicy:

214 Hack Wars. Na tropie hakerów

<����	�����
���2�0

������	���5�����
��?@�
"
����
��#

����������!#����� !!#��HH�
���?�@����#
$

�����������
"
����
�
�
����? !!@#
����
��������#

���	���5���
�
�����#

����������������!#����������� !!#��������HH�
��������
���*+�,��
�BE�������
	�-���������-�*����������
�
����?�������@�#
$

Parametr funkcji, �����'(, jest tablicą dowolnej długości. Deklaracja taka jest możli-

wa, ponieważ kompilator przekazuje jedynie adres początkowy tablicy, a nie wartości

poszczególnych jej elementów. Konsekwencją tego jest fakt, że funkcja może zmie-

niać wartości elementów tablicy. Aby uniemożliwić funkcji wprowadzanie modyfika-

cji, konieczne jest użycie typu �����:

�	���5�������
���
��?@�
"
$

Przy takiej deklaracji wiersz zmieniający zawartość tablicy wywołałby błąd kompila-

cji. Określenie parametru jako wartości stałej nie likwiduje jednak pośredniości jego

przekazania. Ilustruje to poniższy program:

<����	�����
���2�0

�������	���5�������
���
��?@�
"
����
�4�
�#
����
��#

34'���������������	5����
���8�����U�	������	������
�������������U43
34����
�����������������5������V�����43
34��5��
�����V�����������
�����
�������43
���
�����#

����������!#����� !!#��HH�
��"
����4�
�����#
�����
�HH#
��$
$

�����������
"

Rozdział 6. ���� Podstawy programowania dla hakerów 215

����
�
�
����? !!@#
����
��������#

���	���5���
�
�����#

����������������!#����������� !!#��������HH�
��������
��*+�,��
�BE�������
	�-���������-�*���������
�
����?�������@�#
$

Przekazywanie parametrów funkcji main()

Język C umożliwia przekazanie parametrów do uruchamianego programu z poziomu

systemu operacyjnego. Do ich odczytania wykorzystuje się zmienne
	�� i
	��'(:

<����	�����
���2�0

������������
������������4����?@�
"
����
��#

����������!#���������#��HH�
������
���*+�,��
����������
�	�-��
��-�*�������?�@�#
$

Parametr
	�� przechowuje liczbę przekazanych programowi parametrów. W tablicy

	��'(zapisane są ich adresy;
	��'�(jest zawsze nazwą uruchamianego programu.

Mechanizm ten ma szczególne znaczenie dla aplikacji wymagających dostępu do pli-

ków systemowych i danych. Rozważmy następującą sytuację: mała aplikacja obsługi

baz danych przechowuje swoje dane w pojedynczym pliku dane.dat; aplikacja ta musi

zostać tak zaprojektowana, aby można było uruchomić ją z dowolnego katalogu, czy

to na dysku twardym, czy dyskietce; musi również zapewnić uruchamianie za pośred-

nictwem ścieżki wyszukiwania DOS-u (�
��). Do poprawnej pracy aplikacji jest więc
wymagane, aby zawsze mogła odnaleźć plik dane.dat. Rozwiązanie takie zapewni

przyjęcie założenia, że plik danych jest zawsze w identycznym katalogu co sam pro-

gram. Poniższy fragment ilustruje wykorzystanie parametrów
	�� i
	�� w celu utwo-
rzenia ścieżki do pliku danych aplikacji:

<����	�����
����2�0

����������(����	? W!@#

������������
������������4����?@�
"
�������4����(���������*XD'D2XD'*#
�������4�#

���
����������(����	�����?!@�#

�����
��
�������(����	��*2���*�#���������
���
�������������������������������;���
� ���
������92:2�
�����������KYZZ�
��"
����34�9����	�	������������5��
���������27LJ�43

216 Hack Wars. Na tropie hakerów

�����
��
�������(����	��*2���*�#
��$

��34�,���	�	5������
�
���	��B����43
��������4��� ��>��U++U�
�������#

���
�����������(�������#
$

Przedstawiony program tworzy i zapisuje w zmiennej �
!"
)���#� ciąg postaci ścież-
ka\dane.dat. Jeżeli więc przykładową nazwą pliku uruchomieniowego będzie test.exe

i zostanie on umieszczony w katalogu \borlandc, zmiennej �
!"
)���#� przypisany
zostanie ciąg * �	�
���*�
�
+�
�.

Wyj#cie z funkcji

Polecenie 	
��	� powoduje natychmiastowe wyjście z funkcji. Jeżeli w deklaracji

funkcji podano typ zwracanej wartości, w poleceniu 	
��	� należy użyć parametru te-

go samego typu.

Prototypy funkcji

Prototypy funkcji umożliwiają kompilatorowi C sprawdzanie poprawności przekazy-

wanych, do i z funkcji, danych. Ma to istotne znaczenie jako zabezpieczenie przed

przekroczeniem zakresu zaalokowanego dla zmiennej obszaru pamięci. Prototyp funkcji

umieszcza się na początku programu po poleceniach preprocesora (takich jak �������
)
i przed deklaracjami funkcji.

Polecenia preprocesora C

W języku C w treści kodu źródłowego można umieszczać polecenia dla kompilatora.

Określa się je terminem polecenia preprocesora. Norma ANSI definiuje następujące:

<��
<�����
<������
<����
<����
<�����
<����	��
<������
<	����
<����
<�����
<������

Wszystkie polecenia preprocesora rozpoczyna znak krzyżyka (hash), czyli #. Każde

wymaga osobnego wiersza kodu (uzupełnionego ewentualnie komentarzem). Poniżej

przedstawiamy krótkie omówienie.

Rozdział 6. ���� Podstawy programowania dla hakerów 217

#define

Polecenie ��
���
 tworzy identyfikator, który kompilator zastąpi podanym ciągiem

w danym module kodu źródłowego. Na przykład:

<�������TDZF&�!
<�������'[Y&�>TDZF&

Kompilator zastąpi wszystkie dalsze wystąpienia ciągu ,-./0 znakiem �, a wszystkie
dalsze wystąpienia ciągu 1230 — ciągiem 4�. Zastępowaniu nie podlegają identyfi-
katory wewnątrz znaków cudzysłowu, a więc wiersz:

����
���*'[Y&*�#

nie zostanie zmieniony, ale

����
���*-�*�TDZF&�#

podlega modyfikacji.

Polecenie ��
���
 może również zostać użyte do definiowania makr, także makr z pa-

rametrami. Do zapewnienia poprawności zastąpień zaleca się ujmowanie parametrów

w nawiasy. W poniższym przykładzie deklarujemy makro o nazwie �
	�
	��, przyj-
mujące dwa parametry i zwracające ten z nich, którego wartość jest większa.

<����	�����
���2�0

<����������������
�����0�
��R�����S��
�

��
�������
"
������
��*+�-��5��
���6����*��������I�N��#
$

#error

Polecenie �
		�	 powoduje przerwanie procesu kompilacji i wyświetlenie podanego

tekstu, na przykład:

<������F\LJ9]ZL,DK&�XL�JLXYZY�:

powoduje zatrzymanie kompilacji i wyświetlenie:

F\LJ9]ZL,DK&�XL�JLXYZY�:

#include

Polecenie �������
 nakazuje kompilatorowi odczytanie i przetworzenie zawartości

dodatkowego pliku źródłowego. Nazwa pliku musi zostać ujęta w cudzysłów lub

wstawiona między znaki �5, na przykład:

<����	���*���	��12�*
<����	�����
���2�0

Jeżeli nazwa pliku została wpisana między znaki �5, kompilator wyszukuje go w kata-

logu określonym w konfiguracji. Jest to zasada ogólna.

218 Hack Wars. Na tropie hakerów

#if, #else, #elif, #endif

Grupa poleceń ��� dostarcza mechanizmu kompilacji warunkowej. Stosowana jest

dość typowa składnia:

<���������
���
����
���

����	��
<����
���

����	��
<�����

Polecenie �
��� to skrócona postać �
��
���:

<���������
��
���

����	��
<�����������
��
���

����	��
<�����

#ifdef, #ifndef

Rozwinięciem tych poleceń jest �����
���
� (jeżeli zdefiniowano) i ���������
���
�
(jeżeli nie zdefiniowano). Konstrukcje składniowe są następujące:

<������
����������
���

����	��
<����
���

����	��
<�����

<�������
����������
���

����	��
<����
���

����	��
<�����

��������
�� to identyfikator utworzony za pomocą deklaracji ��
���
.

#undef

Polecenie ����
� usuwa definicję makra utworzonego przy użyciu wcześniejszej in-

strukcji ��
���
.

#line

Polecenie ����
 modyfikuje zmienne globalne kompilatora)).670)) i)),6.0)).
Ogólną postacią instrukcji jest:

<�����
�����*
����������*

Wartość ����� zostaje umieszczona w zmiennej)).670)), a 8������
��
�8 — w zmien-

nej)),6.0)).

Rozdział 6. ���� Podstawy programowania dla hakerów 219

#pragma

Umożliwia korzystanie z poleceń specyficznych dla kompilatora.

Instrukcje steruj"ce

Jak w każdym języku programowania, również w C, znajdziemy instrukcje spraw-

dzające wartość wyrażenia. Wynikiem takiego sprawdzenia jest wartość 1230 lub ,-./0.
Wartości ,-./0 odpowiada liczba �, a 1230 — liczba różna od zera.

Instrukcje wykonania warunkowego

Podstawową instrukcją wykonania warunkowego jest �� o następującej składni:

����������
���
����

����	��
����
����

����	��

gdzie ���	��
��� może być instrukcją pojedynczą lub ujętym w nawiasy klamrowe

blokiem kodu. Element
��
 jest opcjonalny. Jeżeli wartością ��������� jest 1230,
wykonywana jest instrukcja podana bezpośrednio po nim. W pozostałych przypadkach

wykonywana jest instrukcja podana po słowie
��
 (o ile ta część składni została użyta).

Alternatywą dla konstrukcji ��+++
��
 jest polecenie 9: w postaci:

������
������

����	�������������

����	������
�

Jeżeli wartością wyrażenia jest 1230, wykonywana jest pierwsza instrukcja. W pozo-

stałych przypadkach wykonywana jest instrukcja druga. Ilustruje to przykład:

<����	�����
���2�0

�����������
"
����
��#
������W#

������
��*+���
������
��-�*����-�1����!�R�*������
�*�S�*���������
�*�#
$

Język C oferuje również instrukcję �"����, ułatwiającą porównywanie wyrażenia
z pewną listą wartości. Wykonywane są instrukcje powiązane z pierwszą dopasowaną

wartością listy. Składnia polecenia �"���� jest następująca:

���
����������
���
"
�������������� �S����

����	��
����
����#
��������������!�S����

����	��
����
����#
2
2

220 Hack Wars. Na tropie hakerów

��������������
�S����

����	��
����
����#
������	�
�S����

����	��
$

Użycie instrukcji 	

nie jest wymagane, ale jej pominięcie powoduje dalsze po-

równywanie wyrażenia z kolejnymi elementami listy wartości.

<����	�����
���2�0

�����������
"
����
��#

������W#

�����
������
��"
���������!�S�����
���*+����G������6�����*�#
������
����#
��������� �S�����
���*+����G������6�5����*�#
������
����#
���������1�S�����
���*+����G������6����*�#
������
����#
���������A�S�����
���*+����G������6�
���*�#
������
����#
��������	�
�S�����
���*+���5��
���6��������
�����*�#
��$
$

Instrukcje �"���� można zagnieżdżać.

Instrukcje iteracji

W języku C stosuje się trzy instrukcje pętli (iteracji): ��	, "���
 i ��;"���
. Składnia
pętli ��	 jest następująca:

�����
�	������	��#����
��#�
�����
��
����

����	��

Jest ona szczególnie przydatna, gdy korzystamy z licznika, jak w poniższym przykła-

dzie wyświetlającym zestaw znaków ASCII:

<����	�����
���2�0

�����������
"
����
��#

����������A1#����� 1^#��HH�
��������
���*-�+
-�+
*�����#
$

Dopuszczalna jest również nieskończona pętla ��	:

Rozdział 6. ���� Podstawy programowania dla hakerów 221

����##�
"
���

����	��
$

Język C pozwala używać też pustych instrukcji. Poniższa pętla usuwa z ciągu począt-

kowe znaki odstępu:

����#�4�
�����U�U#��
�HH�
��#

Warto zwrócić uwagę na średniki odpowiadające inicjalizacji pętli i pustej instrukcji.

Pętla "���
 ma konstrukcję nieco prostszą:

����������
���
����

����	��

Instrukcja lub blok instrukcji (ujęty w nawiasy klamrowe) będą powtarzane do czasu,

gdy wyrażenie warunku przyjmie wartość ,-./0. Jeżeli wyrażenie nie jest prawdziwe
jeszcze przed wejściem do pętli, instrukcje nie będą wykonywane w ogóle. Jest to

istotna różnica w stosunku do pętli ��;"���
, która zawsze zostaje wykonana co naj-
mniej raz. Jej składnia to:

��
"
���

����	��
$
����������
���#

Instrukcje skoku

Instrukcja 	
��	� pozwala powrócić z funkcji wykonywanej do funkcji, z której ta zo-
stała wywołana. W zależności od zadeklarowanego typu wartości zwracanej przez

funkcję instrukcja 	
��	� może wymagać odpowiedniego parametru:

��
�JYZ'���
������
���
"
����
	�����4���#
$

lub

������	���5����
"
������
���*+�=�����,����*�#
����
	��#����
���������	���
	�������5��
�����������92:2�
$

Instrukcja 	

służy do wychodzenia z pętli lub instrukcji �"����. W przypadku pę-

tli powoduje to jej przedwczesne zakończenie, jak w poniższym przykładzie:

<����	�����
���2�0

�����������
"
����
��#

222 Hack Wars. Na tropie hakerów

����������!#�����1IW#��HH�
��"
������������� !!�
������
����#

��������
���*-�+
*���#
��$
$

Uzupełnieniem 	

jest polecenie �������
, wymuszające przeprowadzenie następ-

nej iteracji pętli. Kolejną wykonywaną instrukcją jest w tym przypadku instrukcja pę-

tli (dalsze instrukcje w iterowanym bloku są pomijane). Dostępna jest również funk-

cja przedwczesnego zakończenia wykonywania programu —
�����. Można za jej

pomocą przekazać wartość zwracaną do programu wywołującego:

���
�������������	�
��#

Continue

Słowo kluczowe �������
 nakazuje skok do instrukcji kontrolnej pętli. W przypadku

pętli zagnieżdżonych jest to instrukcja pętli wewnętrznej ("���
, ��+++"���
��). To spo-
sób na łagodne zakończenie pętli jak w poniższym przykładzie, gdzie odczytujemy

zapisane w pliku ciągi:

<����	�����
���2�0

�����������
"
��T]Z&�4��#
�������4�#
�������
	��? !!@#

�������������*����2
�
��*�#
������������KYZZ�
��"
���������
���
�����*K�����8����
�����E�����	���
�2
�
*�#
�������
�!�#
��$

����
��"
�����������
��
	��� !!����#
�������������KYZZ�
������34�,��	���������5B����43
���������
��	�#
�����	
����#
��$
����������#
$

W przypadku pętli ��	 instrukcja �������
 powoduje najpierw wykonanie wyrażenia
inkrementacji, a dopiero po nim następuje sprawdzenie warunku zakończenia.

Rozdział 6. ���� Podstawy programowania dla hakerów 223

Wej#cie-wyj#cie

Pobieranie danych

Program w języku C może pobierać dane z konsoli (która jest standardowym urzą-

dzeniem wejściowym), pliku lub portu. Ogólnym poleceniem odczytu danych ze stan-

dardowego strumienia wejściowego ����� jest ��
����. Skanuje ono po jednym znaku
kolejne pola wejściowe. Podlegają one formatowaniu zgodnie z pierwszym z przekaza-

nych funkcji ��
���� parametrów. Następnie pole zostaje zapisane pod adresem prze-

kazanym jako kolejny parametr wywołania funkcji. Przykładowy program odczytuje

pojedynczą liczbę całkowitą ze strumienia �����:

�����������
"
����
��#

��������*-�*��.��#
$

Warto zwrócić uwagę na operator użyty jako prefiks zmiennej � na liście parametrów

wywołania funkcji ��
����. Funkcja ta zapisuje bowiem wartość pod określonym ad-
resem, nie posługując się mechanizmem przypisywania wartości zmiennej. Ciągiem

formatującym jest ciąg znakowy, który może zawierać trzy typy danych: znaki odstępu
(spacja, tabulator, przejście do nowego wiersza), znaki właściwe (wszystkie znaki ASCII
z wyjątkiem znaku %) i specyfikatory formatowania. Specyfikatory te mają następu-

jącą składnię:

-?4@?
��������@?�/�/Z@���

Oto przykład:

<����	�����
���2�0

�����������
"
���������������?A!@#
����
�����#

������
���*9���5�����������������*�#
��������*-A!�-�*����������.�����#
������
���*+�-��-�*���������������#
$

Zwróćmy uwagę na wiersz �������
�������+�5 — nakazuje on kompilatorowi prze-

twarzanie pliku nagłówkowego stdio.h, w którym zawarte są prototypy funkcji ��
����
i �	������. Po uruchomieniu tego prostego programu łatwo przekonamy się, że użycie

znaku odstępu przerwie wprowadzanie pierwszego pola danych.

Alternatywną funkcją pobierania danych jest �
����, odczytująca ciąg znaków ze stru-
mienia ����� do momentu napotkania znaku nowego wiersza. W ciągu docelowym znak

nowego wiersza zastąpiony zostaje znakiem 73..����. Charakterystyczna dla tej funkcji
jest możliwość odczytywania znaków odstępu. Oto nowa wersja powyższego programu

(korzystająca z �
���� w miejsce ��
����):

224 Hack Wars. Na tropie hakerów

<����	�����
���2�0
<����	�����
���
2�0
<����	�����
����2�0

�����������
"
�����������?^!@#
�������4�#
���������������?A!@#
����
�����#

������
���*+�9���5�����������������*�#
��34�L����
���C�	��������43
����
�������#

��34���5��
�����V������������
�
����������	���
�����������C�	�43
������.����?�
������������� @#

��34�Y�	���������5����_���������
6�	5C��5����������KYZZ�43
��������4�����U�U�"
����4����!#
�������#
��$

��34�Z������	5������
�
��C�����56�����C�	�43
�������
�����������U�U�#

��34�L����
	5�����������������������������
6�43
����������
�����#

��34�,�
��������������_�����C�	�����������������	�43
��4����!#

��34�\���	5������C�������������������5�43
���
��������������������#

��34�,�B���
������������������5��43
������
���*+�K�������S�-�������S�-�*�����������������#
$

Wyprowadzanie danych

Podstawową funkcją wyprowadzania danych jest �	������. Jest ona podobna do ��
����
z tą różnicą, że zapisuje dane do standardowego strumienia wyjściowego ������.
Funkcja pobiera listę pól danych wyjściowych, odpowiednio stosuje specyfikatory
formatowania i wyprowadza wynik. Można stosować takie same przekształcenia for-
matujące jak w przypadku funkcji ��
����, jak również dodatkowe znaczniki:

; wyrównuje dane wyjściowe do lewej, uzupełniając je z prawej strony
znakami odstępu międzywyrazowego (spacji),

� wymusza poprzedzanie liczb znakiem.

Nieco odmienna jest także postać specyfikatora szerokości. Jest on rozbudowany o ele-
ment określający precyzję:

��������2���	����

Rozdział 6. ���� Podstawy programowania dla hakerów 225

Aby więc wyświetlić liczbę zmiennoprzecinkową z dokładnością do trzech miejsc

dziesiętnych, piszemy:

����
���*-2A�*���#

Poniżej przedstawiamy listę specjalnych stałych znakowych, które mogą pojawić się

na liście parametrów funkcji �	������:

+� nowy wiersz (NL),

+� powrót karetki (CR),

+
 tabulator,

+
 znak cofania (backspace),

+� znak nowej strony,

+� tabulator pionowy,

++ ukośnik odwrotny (backslash),

+U apostrof,

+* cudzysłów,

+R znak zapytania,

�+� ciąg w notacji ósemkowej,

+� ciąg w notacji szesnastkowej.

Kolejny program ilustruje, w jaki sposób wyświetlić liczbę całkowitą w postaci dzie-

siętnej, szesnastkowej i ósemkowej. Liczba �< po znaku procentów (=) w instrukcji
�	������ nakazuje kompilatorowi dopełnienie wyświetlanej liczby do szerokości co

najmniej czterech cyfr:

34�9���
�����������������5������
�������6
�����43
34�������
�����������
����5���G�������5�43

<����	�����
���2�0

�����������
"
����
��#

����
��"
��������
���*+�9���5�����
6���	
�!���
������_���E��*�#
����������*-�*�.��#
��������
���*-!`��-!`)�-!`�*�������#
��$
�����������>��!�#

$

Do funkcji pokrewnych �	������ należy ��	������, której prototyp ma postać:

�����
��T]Z&�4���������4�����
?����	���
�222@�#

Jej zadaniem jest przesyłanie sformatowanych danych wyjściowych do określonego

strumienia plikowego.

226 Hack Wars. Na tropie hakerów

Kolejną tego rodzaju funkcją jest ��	������ o prototypie:

�����
�������4��������4�����
?����	���
�222@�#

Alternatywą dla �	������ jest ������, funkcja przesyłająca prosty ciąg do strumienia
������. Przesyłany ciąg zostaje automatycznie uzupełniony znakiem nowego wiersza.
Jest to rozwiązanie szybsze od �	������, jednak jego możliwości są ograniczone.

Bezpo#rednia wymiana danych z konsol*

Do przesyłania i odczytu danych z konsoli (klawiatury i ekranu) można wykorzysty-
wać również bezpośrednie funkcje we-wy. Wyróżnia je litera „c” na początku — od-
powiednikiem �	������ jest więc ��	������, a odpowiednikiem ������ — funkcja
�������. Różnice między funkcjami bezpośredniej wymiany danych a funkcjami
standardowymi są następujące.

���� Nie są wykorzystywane strumienie predefiniowane, nie można więc przekierować
danych przesyłanych funkcjami komunikacji bezpośredniej.

���� Funkcji bezpośrednich nie można przenosić między różnymi systemami
operacyjnymi (m.in. nie można z nich korzystać w programach dla Windows).

���� Funkcje bezpośrednie są szybsze niż standardowe.

���� Nie zapewniają współpracy ze wszystkimi trybami wyświetlania (zwłaszcza
trybami graficznymi VESA).

Wska%niki

Wskaźnik to zmienna, która przechowuje adres elementu danych w pamięci. Deklara-
cja wskaźnika jest podobna do deklaracji zwykłej zmiennej, ale nazwa poprzedzana
jest znakiem gwiazdki (�), na przykład:

�����4�#

Powyższy wiersz deklaruje zmienną � jako wskaźnik do zmiennej typu ��
	.

Wykorzystanie wskaźników dostarcza szerokich możliwości, wymaga jednak szcze-
gólnej uwagi. Skutki przypisania błędnego adresu są najczęściej nieprzewidywalne.
Oto przykład prostego programu, w którym wykorzystywany jest wskaźnik:

<����	�����
���2�0

�����������
"
����
��#
����
�4�#

��34���5��
�����V�����������������
��	���
�43

������ !!#
������.�#

������
��*+�M�����������������	5�����
�BE�-��������������-�2*�����#
$

Rozdział 6. ���� Podstawy programowania dla hakerów 227

Wartości wskaźników można zwiększać i zmniejszać, dopuszczalne są również inne

operacje matematyczne. Typowym zastosowaniem wskaźników jest zapewnienie dy-

namicznego przydziału pamięci. W trakcie pracy programu często pojawia się potrze-

ba przejściowego (tymczasowego) zaalokowania bloku pamięci. Korzystamy wów-

czas z funkcji �
������:

�
��"
��������
�#������������������	�����������#

Funkcja �
������ zwraca wskaźnik typu ����, co oznacza, że może on wskazywać

dane dowolnego typu — ���, ��
	, ���
� itd. W poniższym przykładzie alokujemy

pamięć dla tabeli 1000 liczb całkowitych.

<����	�����
���2�0
<����	�����
���
2�0

�����������
"
����
�4�#
����
��#

��34���5��
�����V�����������������
��	���
�43

��34�'��������
�
���6� !!!�������
��C�43
��34�������������
�������������
��������������5��������
���43
��34�
�5
G����������5��������������������������5�
��	���
�43

������������� !!!�4����������
��#

��34�F��������������������5�����
�;�����������43
�����������KYZZ�
��"
��������
��*+�K�����8������������E�����6������� !!!�������
���5�
�
��������
�B��
���� � ��
*�#
�������
�!�#
��$

��34�9������	5�������
�B�����������G�����������
���43
����������!#����� !!!#��HH�
��"
����4�����#
�����HH#
��$

��34�9����������������
�BE������	�����C
�������
�
����43
������� !!!#

��34�,�B���
��������
�B���
�
����43
����������!#����� !!!#��HH�"
��������
��*+�&�����
�-����������	5�����
�BE�-�*���4��#
�����HH#
��$
��34�9��	8���	��������	5����
��������6���43
���������#
$

228 Hack Wars. Na tropie hakerów

Wskaźniki wykorzystuje się również w odniesieniu do tablic znaków, czyli ciągów
(strings). Ponieważ wszystkie ciągi w programach C kończy bajt o wartości 0, korzy-

stając ze wskaźnika, możemy policzyć znaki w ciągu:

<����	�����
���2�0
<����	�����
����2�0

�����������
"
�������4�#
�������
���
? !!@#
����
���	����#

��34�]���5	5����������C�U
���
U�43
���
�����
���
�*'��5��
�������������*�#

��34�Y�
����������
�BE��������5����������C
���
���
	�43
������
���
#

��34�]���5	5����������C��;	��BE�43
����	�������!#

��34�M�����������������������5�
���
�43
��������4��
��"
������	����HH#
�����HH#
��$

��34�,�B���
�����������43
�������
��*+�X�	���������	�����������
�S�-�*���	�����#
$

Wymaganą do zaadresowania 1 MB pamięci 20-bitową liczbę dzieli się na dwie warto-

ści: przesunięcie (offset) i segment (każdy segment to 64 kB). Do przechowywania nu-

merów segmentów pamięci komputer IBM PC wykorzystuje tzw. rejestry segmentowe.

Konsekwencją takiego rozwiązania są w języku C trzy dodatkowe słowa kluczowe:

���� �

	 — wskaźniki „bliskie” mają rozmiar 16 bitów i umożliwiają dostęp

do danych bieżącego segmentu,

���� �
	 — wskaźniki „dalekie” obejmują wartości określające przesunięcie

i segment, umożliwiając dostęp do dowolnego adresu w pamięci,

���� ���
 — wskaźniki „ogromne” to odmiana wskaźników dalekich, zapewniająca

możliwość zwiększania i zmniejszania wartości w całym zakresie 1 MB

(kompilator generuje odpowiedni kod modyfikujący wartość przesunięcia).

Nie będzie zapewne zaskakujące stwierdzenie, że przetwarzanie programu korzystają-

cego ze wskaźników typu �

	 będzie szybsze niż w przypadku programu, w którym

zastosowano wskaźniki �
	. Wskaźniki ���
 są oczywiście największym obciążeniem.

Kompilatory C wyposażone są w makro zwracające adres odpowiadający podanym

wartościom numeru segmentu i przesunięcia:

���������4J\(T9�	��������������
��	�������������
�#

Rozdział 6. ���� Podstawy programowania dla hakerów 229

Struktury

Język C oferuje technikę grupowania zmiennych pod jedną nazwą, dostarczając w ten

sposób wygodnego sposobu przechowywania powiązanych ze sobą informacji i struktu-

ralizowania ich. Składnia definicji struktury jest następująca:

��������
�	�

"
����������

���
���������

��#
����������

���
���������

��$
��2
��2
��2
$

�����
��������#

Używanie zmiennych strukturalnych jest niezbędne przy korzystaniu z plików, w któ-

rych występuje uporządkowanie oparte na rekordach danych. W poniższym przykła-

dzie operować będziemy na prostym pliku z listą adresów. Rozpoczniemy od deklara-

cji struktury �
�
, złożonej z sześciu pól: �
!"��#�,
�	
�, ��
���, "�$
"��!�"�,
���!�
 i �	�
�
����:

��������
�	�

"
���������������?A!@#
������������?A!@#
�����������
�?A!@#
���������5�����
��?A!@#
����������?W@#
���������
������	? I@#
$
����#

Odwołania do pól zmiennej strukturalnej mają postać:

����

��
�����2
���������#

Nie ma ograniczenia liczby pól struktury, nie jest również wymagane, aby typy pól

były takie same lub podobne, na przyklad:

��������
�	�

"
���������������?A!@#
����
�����#
�������4��
�
��#
$
��#

Jest to poprawna deklaracja struktury obejmująca: pole tablicy znakowej, pole liczby

całkowitej i pole wskaźnika do zmiennej znakowej. Aby przekazać zmienną struktu-

ralną jako parametr, korzystamy z jej adresu — poprzedzamy nazwę zmiennej ope-

ratorem >. Oto przykładowy program wykorzystujący struktury w celu wykonania

prostych operacji na pliku listy adresów:

230 Hack Wars. Na tropie hakerów

<����	�����
���2�0
<����	�����
���
2�0
<����	������2�0
<����	�����
����2�0
<����	�������
�2�0
<����	�������+�
�
2�0

34�����
�(��������
������
���������������	�43
<�����������
�(��������1I

��������
�	�

"
���������������?A!@#
������������?A!@#
�����������
�?A!@#
���������5�����
��?A!@#
����������?W@#
���������
������	? I@#
$
����#

�����������#
��
�������#

34�9��
�
�����	���5��43

�����DXX([&7������#
�����7ZF������#
�����X]F9XD'D������#
�����TD'DZ������4�#
�����%&'XD'D������#
�����J&KY������#
�����L9&KXD'D������#
��
�F&D[7=������#

�����7ZF��
"
����
��#

����������!#���������
�(�������#��HH�
�����	
��**�#
$

�����TD'DZ������4
����
"
������
��*�+�:�������
�����S�-�*�
����#
�����
�!�#
$

�����L9&KXD'D��
"
��34�F�����V�������
���5�������������2�a�8���������	
�G��2�43
��34�a�8����
�����
�G�����������
	������	������_�	�����	2�43

����������������*�������2��
*�L([X,[/L(D99&KX�F(],[]'&�#

Rozdział 6. ���� Podstawy programowania dla hakerów 231

����������������� �
��"
������������������*�������2��
*�L([X,[/L(7[&D'�F(],[]'&�#
������������������� �
������TD'DZ�*K�����8���	
�����E�����	�������*�#
��$
$

�����%&'XD'D��
"
��34�9�
�������������������43

��7ZF��#

������
��*K��������*�#
����
��������2���������#
������
��*+�D�����*�#
����
��������2������#
������
��*+�J���
��*�#
����
��������2����
��#
������
��*+�,�5��G��
���*�#
����
��������2��5�����
���#
������
��*+�\�������
����*�#
����
��������2����#
������
��*+�K	����
������	�*�#
����
��������2��
������	�#
$

�����X]F9XD'D��
"
��34�,�B���
����������������43
�������
���
?I@#

��7ZF��#

������
��*K��������-�*�������2���������#
������
��*+�D�����-�*�������2������#
������
��*+�J���
��-�*�������2����
��#
������
��*+�,�5��G��
���-�*�������2��5�����
���#
������
��*+�\�������
����-�*�������2����#
������
��*+�K	����
������	�-�+�+�*�������2��
������	�#

���	
��*�,��B��5�&K'&[*�#
����
��
���
�#
$

�����DXX([&7��
"
��34�X�;C����������	��������������������43
����
������#

�������������
���������.��������������������#

���������������� �
����TD'DZ�*M������������	�������������8����*�#
$

��
�F&D[7=��
"

232 Hack Wars. Na tropie hakerów

�������
���
? !!@#
����
������#

������
��*,������V���G������	��������*�#
����
��
���
�#
������4
���
����!�
������
	���� �#

��34�M�������	5�����C
�������	�43
���������������!�F&&\(F&'�#

����
��"
����34�M�;��	5���������������6���43
������������������������.��������������������#
��������������0�!�
����"
������34�9�����	��5��������43
�����������
��
��������2���������
���
��>��KYZZ�
����������
	��� �#
�����������
��
��������2������
���
��>��KYZZ�
����������
	��� �#
�����������
��
��������2����
��
���
��>��KYZZ�
����������
	��� �#
�����������
��
��������2��5�����
���
���
��>��KYZZ�
����������
	��� �#
�����������
��
��������2����
���
��>��KYZZ�
����������
	��� �#
�����������
��
��������2��
������	�
���
��>��KYZZ�
����������
	��� �#
����$
��$
��������������0�!�#
����
	���!�#
$

�����J&KY��
"
����
����5�#
�������
���
? !@#

����
��"
����7ZF��#
�����	
��*+�+
+
+
,�
��������56*�#
�����	
��*+�+�+
+
+
 �X���5������������*�#
�����	
��*+�+�+
+
+
1�9�����	��������������*�#
�����	
��*+�+�+
+
+
A�,�5B���*�#
�����	
��*+�+�+�+�+�*�#
������
��
���
�#
�������5�����
���
���
�#

�������
������5��
����"
����������� �S�%&'XD'D��#
��������34�9�������;C��������������	�����5�V������_�������	�43
���������������������!�F&&\(&KX�#

Rozdział 6. ���� Podstawy programowania dla hakerów 233

��������DXX([&7��#
��������
����#

�����������1�S�����F&D[7=���
����������X]F9XD'D��#
������������
��������"
�����������	
��*K]&MKDZ&M]LK&>*�#
�����������	
��*,��B��5�&K'&[*�#
������������
��
���
�#
��������$
��������
����#

�����������A�S�
����#
����$
��$
�����������5��>��A�#
$

�����������
"
��7ZF��#
��L9&KXD'D��#
��J&KY��#
$

Pola bitowe

Język C przewiduje możliwość korzystania w strukturach ze zmiennych o rozmiarze
mniejszym niż 8 bitów. Określa się je mianem pól bitowych, a ich rozmiar może być
dowolny, od 1 bitu wzwyż. Deklaracja pola bitowego wygląda następująco:

����
�����S���	���������#

Przykładem może być deklaracja kilku jednobitowych znaczników stanu:

��������
�	�

"
��	����������������������S� #
��	����������������������S� #
��	����������������������S� #
��	��������������
�������S� #
$
��#

������������#

Zmienna !�
�!��#� będzie zajmować w pamięci tylko 4 bity, mimo że składa się z 4 pól,
z których każde dostępne jest jako osobne pole struktury.

Union

Kolejnym ułatwieniem języka C, pozwalającym zapewnić optymalne wykorzystanie
dostępnej pamięci, jest struktura �����, czyli zbiór zmiennych, współużytkujących je-
den adres pamięci. Oznacza to, oczywiście, że w danym momencie dostępna jest tyl-
ko jedna ze zmiennych składowych. Deklaracja ����� ma następującą postać:

234 Hack Wars. Na tropie hakerów

	�����
����
"
������
���������

��#
������
���������

��#
��2
��2
��2
������
���������

��#
$#

Wyliczenia

Wyliczenie (enumeracja) to przypisanie liście symboli rosnących wartości całkowi-
tych. Wyliczenie deklarujemy:

��	��
�����"���
���$���
�������

�	%#

Przykładem może być definicja listy kolorów:

��	��\LZL[b
"
��7MD[Kb�
��K]&:]&F\]�
��M]&ZLKb�
��7M&[,LKb�
��:[DML,b�
��aDFKLFMD[b�
��7]&JKLFMD[b�
��aDFKLK]&:]&F\]�
��aDFKLM]&ZLKb�
��aDFKL7M&[,LKb�
��MLZ'b�
��:]DZb
$#

Operacje na plikach

W operacjach dostępu do plików język C posługuje się buforowanymi strumieniami
plikowymi. Niektóre z platform języka, jak UNIX i DOS, oferują również niebuforo-
wane uchwyty plików.

Strumienie buforowane

Dostęp do strumieni buforowanych realizowany jest za pośrednictwem wskaźnika do
zmiennej typu ,6.0. Ten szczególny typ danych zdefiniowany został w nagłówku st-
dio.h. Aby więc zadeklarować wskaźnik do pliku, wprowadzamy:

<����	�����
���2�0

T]Z&�4�
�#

Aby otworzyć strumień, używamy funkcji ���
���. Pobiera ona dwa parametry: na-
zwę otwieranego pliku oraz tryb dostępu. Oto lista trybów dostępu.

Rozdział 6. ���� Podstawy programowania dla hakerów 235

Tryb Opis

� otwórz tylko do odczytu (plik musi istnieć),

� utwórz do zapisu; zastąp, jeżeli plik o podanej nazwie istnieje,

� otwórz do dołączania danych (dopisywania na końcu pliku); utwórz nowy plik,

jeżeli plik o podanej nazwie nie istnieje,

�H otwórz istniejący plik do odczytu i zapisu (plik musi istnieć),

�H utwórz do odczytu i zapisu; zastąp, jeżeli istnieje,

�H otwórz do czytania i dołączania danych; utwórz nowy plik, jeżeli nie istnieje.

Aby określić tryb tekstowy lub binarny, do opisu trybu można dołączyć � lub . W przy-

padku pominięcia tego znacznika strumień zostanie otwarty w trybie określanym

zmienną globalną)����
. Odczyt i zapis danych do strumieni plikowych w trybie tek-

stowym wiąże się z konwersją — podczas zapisu znaki CR i LF zamieniane są na pary

CR LF, a przy odczycie pary CR LF ulegają zamianie na pojedynczy znak LF. Tego

rodzaju operacje nie są wykonywane w trybie binarnym.

Jeżeli funkcja ���
��� nie będzie mogła otworzyć pliku, zwróci w miejsce wskaźnika

wartość 73.. (zdefiniowaną w stdio.h). Poniższy program utworzy nowy plik dane.txt

i udostępni go do odczytu i zapisu:

<����	�����
���2�0

�����������
"
��T]Z&�4��#

�������������*����2
�
��H*�#
$

Aby zamknąć strumień, używamy funkcji �����
��, wymagającej podania wskaźnika

do pliku.

����������#

Jeżeli podczas zamykania strumienia wystąpi błąd, funkcja �����
�� zwróci wartość
niezerową (znacznik EOF — End Of File). Do przesyłania i odbierania danych ze

strumieni służą cztery podstawowe funkcje: ��
����, �������, ��
���� i �������.
Funkcja ��
���� odczytuje pojedynczy znak z określonego strumienia wejściowego

(przekształcany do liczby całkowitej):

���
����
��T]Z&�4���#

Jej odwrotnością jest �������, zapisująca pojedynczy znak do określonego strumienia

wyjściowego:

���
���	
�����
�	��T]Z&�4���#

Funkcja ��
���� odczytuje ze strumienia wejściowego ciąg:

�����4���
�������4
����
���	������������T]Z&�4���#

236 Hack Wars. Na tropie hakerów

Odczyt zostaje przerwany po pobraniu ����������	���� znaków lub znaku nowego
wiersza (również wstawianego do tablicy). Do odczytanego ciągu � dołączany jest koń-
czący znak�73..��!�
�%��
#?
���������
��@�A*�A�. W przypadku wystąpienia błędów
funkcja zwraca 73...

Funkcja ������� zapisuje do strumienia ciąg zakończony znakiem 73.. (inaczej A*�A):

��
���	
������
������4
��T]Z&�4���#

Wszystkie opisywane funkcje zwracają w przypadku błędów wartość 0B, (zdefinio-
waną w stdio.h) z wyjątkiem funkcji ��
����, która w przypadku wystąpienia błędu
zwraca 73... Poniższy program tworzy kopię pliku dane.dat, o nazwie dane.old, ilu-
strując zarazem użycie wszystkich czterech funkcji:

<����	�����
���2�0

��
�������
"
��T]Z&�4��#
��T]Z&�4�	
#

�������������*��
�2��
��*�#

������������KYZZ�
��"
�����	
��*+�K�����8����
�����E���������
	�����	�����2��
*�#
������
	���!�#
��$

���	
���������*����2���*�*�H*�#

�������	
����KYZZ�
��"
�����	
��*+�K�����8���	
�����E�����	�����2���*�#
������
	���!�#
��$

��34�9��
����5������
�����������������������5����������
�5
G��43
��34��8������
������������<��43
��������>���������
������	
�����
�������	
�#

��34�M�����5��
�	���������������43
������������#
����������	
�#

����
	���!�#
$

W kolejnym przykładowym programie używamy funkcji ����� do kopiowania tekstu
ze strumienia ����� (zazwyczaj oznacza to znaki wprowadzane z klawiatury) do no-
wego pliku dane.txt:

<����	�����
���2�0

��
�������
"

Rozdział 6. ���� Podstawy programowania dla hakerów 237

��T]Z&�4��#
�������
���
? !!@#

�������������*����2
�
��H*�#

����
��"
������
��
���
�#
������	
��
���
����#
��$
��������4
���
�#

������������#
$

Swobodny dost�p do danych strumieni

Dostęp swobodny do danych dostarczanych za pośrednictwem strumieni zapewnia
funkcja ��

#�� o prototypie:

��
�������T]Z&�4�����������	��������������
���	�
������#

Funkcja zmienia pozycję wskaźnika pliku skojarzonego ze strumieniem otwartym
wcześniej przez ���
���. Wskaźnik ustawiany jest na ����������	�� za (lub przed
w przypadku wartości ujemnej) pozycją ����������. Tą ostatnią może być początek
pliku, bieżące położenie wskaźnika lub koniec pliku. Pozycje te symbolizują stałe
/00C)/01, /00C)D32 i /00C)07E. Udaną operację ��

#�� sygnalizuje zwrócenie warto-
ści �. Uzupełnieniem ��

#�� jest funkcja ��
����, zwracająca wartość bieżącej pozy-
cji wskaźnika pliku:

�������
��
����T]Z&�4���#

Funkcja zwraca pozycję wskaźnika pliku, określoną jako ilość bajtów od początku
pliku, lub ;� w przypadku błędu.

Uchwyty

Uchwyty plików (handles) otwiera funkcja ��
��� o prototypie:

��
�����������4
��������������
���
�&�?��	������������@�#

Udaną operację sygnalizuje zwrócenie numeru uchwytu. W pozostałych przypadkach
zwracane jest F�. Na wartość ���	�
 składają się połączone bitową operacją OR stałe
symboliczne, odpowiadające deklaracjom w pliku fcntl.h. Różnią się one w zalezności
od kompilatora. Do typowych należą:

L(D99&KX przed każdym zapisem wskaźnik pliku będzie ustawiany na końcu pliku,

L(7[&D' jeżeli plik nie istnieje, zostanie utworzony,

L('[YK7 obcina istniejący plik do długości 0 bajtów,

L(&)7Z używane w połączeniu z B)D20-1,

L(:]KD[b otwiera plik w trybie binarnym,

L('&)' otwiera plik w trybie tekstowym.

238 Hack Wars. Na tropie hakerów

Po przypisaniu uchwytu pliku za pomocą polecenia ��
��� można korzystać z funkcji

	

��� i "	��
��. Prototyp 	

��� jest następujący:

��
��������
�%�
����������4�����	����������	�����������#

Funkcja podejmuje próbę odczytu podanej liczby bajtów i zwraca liczbę bajtów fak-

tycznie pobranych przez uchwyt pliku. Odczytane dane umieszczane są w bloku pa-

mięci określonym parametrem ���. Funkcja ���	��� działa podobnie, nie różni się

również jej prototyp i sposób generowania wartości zwracanej. Zapisuje ona podaną

ilość bajtów z określonego wskaźnikiem bloku pamięci. Pliki otwierane funkcją

��
��� zamykamy funkcją ����
��:

��
���������
�%�
����#

Funkcja ����
�� zwraca � w przypadku operacji udanej, a F� w przypadku wystąpie-
nia błędów.

Dostęp swobodny zapewnia funkcja ��

#��, bardzo podobna do ��

#��, ale pobie-
rająca jako parametr numer uchwytu, a nie wskaźnik strumienia ,6.0. W poniższym

przykładzie wykorzystujemy uchwyt pliku do zapisu danych z ����� (czyli klawiatu-
ry) do nowego pliku o nazwie dane.txt:

<����	������2�0
<����	�������
�2�0
<����	�������+�
�
2�0

��
�������
"
����
�������#
�������
���
? !!@#

����������������*����2
�
*��L([X,[/L(7[&D'/L('[YK7�F(],[]'&�#

����
��"
������
��
���
�#
�������
����������.
���
���
�����
���
��#
��$
��������4
���
�#

���������������#
$

Przegl*d funkcji plikowych

Norma ANSI definiuje związane z plikami operacje we-wy przy użyciu strumieni,

opisując różnorodne funkcje. Prototyp funkcji ���
��� ma postać:

T]Z&�4����������
������4
����������
������4�����#

Funkcja podejmuje próbę otwarcia strumienia łączącego z plikiem o podanej nazwie

w określonym trybie. Udana operacja kończy się zwróceniem wskaźnika typu ,6.0.
W przypadku niepowodzenia funkcji zwraca 73... Na wcześniejszych stronach przed-
stawiony został opis parametru 	���.

Rozdział 6. ���� Podstawy programowania dla hakerów 239

Funkcja �����
�� służy do zamykania strumienia otwartego wcześniejszym wywoła-
niem ���
���:

��
��������T]Z&�4���#

Udana operacja �����
�� kończy się opróżnieniem wszystkich buforów pliku i zwró-
ceniem wartości �. W przypadku błędów zwracana jest wartość 0B,.

Wiele komputerów korzysta z buforowanego dostępu do plików. Oznacza to, że dane,
zapisywane do strumienia, wstępnie umieszczane są w pamięci, a faktyczny zapis na-
stępuje dopiero po przekroczeniu pewnej granicznej ilości bajtów. Jeżeli w czasie,
gdy dane nie zostały jeszcze faktycznie zapisane do strumienia, nastąpi awaria zasila-
nia, dane zostaną utracone. Zabezpiecza przed tym funkcja ��������, wymuszająca
zapisanie wszystkich danych oczekujących:

��
����	���T]Z&�4���#

Jeżeli wywołanie �������� jest udane, związane ze strumieniem bufory zostają opróż-
nione i zwracana jest wartość �. W przypadku błędów funkcja zwraca wartość 0B,.

Kolejną funkcją jest ��
���� zwracająca lokalizację wskaźnika pliku:

�������
��
����T]Z&�4���#

Funkcja zwraca przesunięcie wskaźnika pliku w stosunku do początku pliku lub F�.
w przypadku błędów. Przesunięcie wskaźnika pliku do nowej pozycji umożliwia ��

#��:

��
�������T]Z&�4������������
������
���	�
������#

Funkcja podejmuje próbę przesunięcia wskaźnika pliku o �����	 bajtów od pozycji
����������, określonej jedną ze stałych:

F&&\(F&' początek pliku,

F&&\(7Y[bieżąca pozycja wskaźnika pliku,

F&&\(&KX koniec pliku.

Przesunięcie (�����) może być wartością dodatnią (przesuwanie wskaźnika w stronę
końca pliku) lub ujemną (przesuwanie wskaźnika w stronę początku pliku). Aby
szybko przenieść wskaźnik do początku pliku i usunąć wcześniejsze odwołania do
błędów, C dostarcza funkcji 	
"�����:

������������T]Z&�4���#

Funkcja ta działa podobnie jak ��

#���&�.&/00C)/01�. Jednak ��

#�� usuwa znacz-
nik 0B,, a 	
"���������
�#�"� wszystkie sygnały błędów. Informacje o błędach funk-
cji plikowych można pobrać przy użyciu funkcji �
		�	��:

��
���������T]Z&�4���#

Funkcja zwraca wartość niezerową, jeżeli w określonym strumieniu wystąpił błąd. Po
sprawdzeniu wartości �
		�	�� należy zadbać o usunięcie sygnałów błędów za po-
mocą funkcji ��

	
		��:

��������������T]Z&�4���#

240 Hack Wars. Na tropie hakerów

Sprawdzenie, czy spełniony jest warunek osiągnięcia końca pliku, realizuje predefi-

niowane makro �
����:

��
������T]Z&�4���#

Makro zwraca wartość niezerową, gdy dla danego strumienia stwierdzono osiągnięcie

końca pliku. W pozostałych przypadkach zwracaną wartością jest �.

Dostępnych jest kilka funkcji realizujących odczyt danych ze strumienia plikowego.

Pojedyncze znaki można odczytywać funkcją ��
����:

��
����
��T]Z&�4���#

��
���� zwraca wartość ASCII pobranego znaku lub znak 0B, w przypadku wystąpie-
nia błędu. Odczyt ciągu danych umożliwia funkcja ��
����, odczytująca ciąg zakoń-
czony znakiem nowego wiersza:

�����4���
��������'
����
�
��T]Z&�4���#

W wyniku udanego wywołania funkcji w zmiennej � umieszczany jest ciąg zakoń-

czony znakiem nowego wiersza lub zawierający ��� znaków. Funkcja zachowuje

kończący ciąg znak nowego wiersza, dołączając do ciągu � bajt 73... W przypadku

nieudanego wywołania zwracany jest wskaźnik pusty. Ciągi zapisujemy do strumie-

nia funkcją �������:

��
���	
������
������4
��T]Z&�4���#

Funkcja ������� zapisuje wszystkie znaki ciągu �, z wyjątkiem końcowego bajtu

73.., do strumienia �
. Standardowo funkcja zwraca ostatni zapisany znak, a w przy-

padku wystąpienia błędów — 0B,. Dostępna jest również funkcja zapisująca do stru-
mienia pojedynczy znak �������:

��
���	
����
�	��T]Z&�4���#

Funkcja zwraca zapisany znak lub, w przypadku wystąpienia błędów, znak 0B,.

Aby odczytać ze strumienia duży blok danych lub rekord, można posłużyć się funkcją

�	

���:

����(
������������4���������(
��������������(
�
��T]Z&�4���#

Funkcja podejmuje próbę odczytu � elementów, z których każdy ma długość �������,

ze strumienia plikowego �
 do bloku pamięci określonego wskaźnikiem
	�. Aby

ustalić, czy operacja przebiegła bez zakłóceń, korzystamy z funkcji �
		�	��.

Siostrzaną funkcją �	

��� jest �"	��
��:

����(
�����
������
������4���������(
��������������(
�
��T]Z&�4���#

Funkcja zapisuje � elementów o długości ������� z obszaru pamięci określonego

wskaźnikiem
	� do strumienia �
.

Funkcja ���
���� umożliwia odczyt danych formatowanych:

��
��������T]Z&�4��������
������4������?�������222@�#

Rozdział 6. ���� Podstawy programowania dla hakerów 241

Funkcja zwraca liczbę faktycznie odczytanych pól, a 0B, w przypadku końca pliku.
Poniższy przykład ilustruje użyteczność funkcji ���
���� podczas odczytywania ze
strumienia liczb:

<����	�����
���2�0

�����������
"
��T]Z&�4��#
����
��#
����
�
#
����
��#
����
��#
����
��#
�������
���
? !!@#

�������������*����2
�
��H*�#

�����>���
��"
�����������*K�����8���	
�����E�����	*�#
�������
�!�#
��$
�������
�����* �1�A�`�I�+*,����������
+**�#

�����	������#

�����������������
��"
������	
��*:;C����������������
�	������*���
�����#
�������
� �#
��$

������������#
�����������������
��"
������	
��*:;C�������������5���	��
�	������*���
�����#
�������
� �#
��$

������������*-��-��-��-��-��-�*��.���.
��.���.���.���
���
�#
�����������������
��"
������	
��*:;C�������
	�����
�	������*���
�����#
�������
� �#
��$

������
��*+�T	���5��������������G��;��-��-��-��-��-��-�*���
�������
���
�#
$

Jak łatwo zauważyć, zapis formatowanych danych realizuje funkcja ��	������. Gdy
pojawia się potrzeba zapisania położenia wskaźnika pliku i późniejszego jego przy-
wrócenia, można skorzystać z funkcji ��
������ i ��
������. Pierwsza z nich odczy-
tuje bieżącą pozycję wskaźnika pliku:

��
����
����T]Z&�4��������(
�4����	���#

242 Hack Wars. Na tropie hakerów

Funkcja ��
������ ustawia wskaźniki pliku na określonej pozycji:

��
����
����T]Z&�4��������
�����(
�4����	���#

Typ ����)� zdefiniowany został w nagłówku stdio.h. Funkcje te są wygodniejsze
w użyciu niż ��
���� i ��

#��.

Z otwartym już strumieniem można skojarzyć nowy plik. Umożliwia to funkcja �	
��
���:

T]Z&�4������������
������4
����������
������4������T]Z&�4���#

Funkcja zamyka strumień istniejący i podejmuje próbę jego ponownego otwarcia przy
użyciu podanej nazwy pliku. Znajduje to zastosowanie przy przekierowywaniu stru-
mieni predefiniowanych �����, ������ i ���
		 do pliku lub urządzenia. Przykłado-
wo, gdy pojawia się potrzeba przekierowania wszystkich danych wyjściowych kiero-
wanych do ������ na drukarkę, można użyć polecenia:

��������*Z9' *�*�*��
��	
�#

Predefiniowane strumienie we-wy

Wstępnie zdefiniowane zostały trzy strumienie we-wy: �����, ������ i ���
		. Do-
myślnie ����� i ������ odpowiadają klawiaturze i monitorowi. Na wielu platformach,
w tym systemów DOS i UNIX, dostępna jest możliwość ich przekierowania. Stru-
mień ���
		 domyślnie powiązany jest z monitorem (wyświetlaczem). Praktyka jego
przekierowywania nie jest raczej stosowana. Jego podstawowym zadaniem jest za-
pewnienie możliwości wyświetlania komunikatów błędów, nawet w sytuacji gdy po-
wiązanie standardowego wyjścia (������) zostało zmienione:

��	
��*\��	����
���
;6����*���
�����#

Funkcje �	������ i ������ przekazują dane do strumienia ������. Funkcje ��
����
i �
���� pobierają dane ze strumienia �����. Przekierowanie tych strumieni zmienia
sposób działania funkcji.

Jako przykład plikowych operacji we-wy na platformie PC, korzystających z możli-
wości przekierowania strumieni, przedstawimy prosty program przesyłający do stru-
mienia ������ zawartość określonego pliku, przedstawioną jako wartości szesnastko-
we. Polecenie w postaci:

�	��������(����	2����0�����(��5B�����2���

pozwoli zmienić domyślne powiązanie strumienia ������ z monitorem.

<����	�����
���2�0
<����	�������
�2�0
<����	������2�0
<����	�����
����2�0

�������
������������4����?@�
"
��	���������������#
��	�������������� ?1!@#
����
�� #
����
��#
����
��#

Rozdział 6. ���� Podstawy programowania dla hakerów 243

�����������>��1�
��"
������	
��*+�:cdX2�9����������;����������;����S��	���� +�*��
�����#
������
	��� �#
��$

��� ������������? @�L([XLKZb�#

������� ����� �
��"
���������
���
������*+�:cdX2�K�����8����
�����E�-�+�*�����? @�#
����
	��� �#
��$

�������
���
��	
�*+�MD,D['Lef�9Z]\Y�-�+�+�*��
�	�������? @��#

������������!#

�������� �
��"
����34�,���;�������
	������������43
���������
�� �!�1!�#

����34�9�
���������
	������������������	�43
��������(������ �.� � W�#

����34�����!�
��<������� ���������
;C��43
������������ �
������
����#

����34�,�������V������
�������	�43
���������
���
��	
�*-!W��-!I���*�����������������#

������������H� W#

����34�,�������V��������
��������
�B���
�5
G����
	�����43
������������!#����� W#��HH�
�����������
���
��	
�*-!1��*�� ?�@�#

����34�,�������V����
�B���DF7]]�
�5
G����
	�����43
������������!#����� W#��HH�
����"
������������ ?�@�0�A ��..��� ?�@��� 1^��
�������������
���
��	
�*-�*�� ?�@�#
����������
����������	
��*2*��
��	
�#
����$

����34�M���_��������������������������43
������	
��*+�*��
��	
�#
��$

��34�����_����������������43
����
	���!�#
$

244 Hack Wars. Na tropie hakerów

Ci"gi

Język C należy do najlepiej wyposażonych w funkcje obsługi ciągów pośród uniwer-

salnych języków programowania. Ciąg to jednowymiarowa tablica znaków zakoń-

czona bajtem zerowym. Ciągi można inicjować dwoma sposobami. Pierwszym jest

nadanie im stałej wartości w kodzie programu:

��
�������
"
�������4����*F��
���I*#
������������?@���*9�������
��
���*#
��
	���!�#
$

Drugi to utworzenie ciągu w czasie wykonywania programu za pomocą funkcji ��	��%��:

�����4�
����������4	�������
������4"������#

Funkcja ��	��%�� kopiuje ciąg źródłowy do lokalizacji docelowej, na przykład:

<����	�����
���2�0

��
�������
"
������������?I!@#

���
�����������*F�������F��
����*�#

������
��*+�,��
�BE���C�	�U�����U�
��-�*�������#
��
	���!#
$

Język C umożliwia bezpośredni dostęp do każdego bajtu ciągu:

<����	�����
���2�0

��
�������
"
������������?I!@#

���
�����������*F�������F��
����*�#

������
��*+�,��
�BE���C�	�U�����U�
��-�*�������#

��34�M��
C������������������
�5
	���
��C�U�U�43
�������?!@���U�U#

������
��*+�,��
�BE���C�	�U�����U�
��-�*�������#
��
	���!#
$

Niektóre kompilatory C wyposażone zostały w funkcje konwersji ciągów do wielkich

i małych liter, nie obejmuje ich jednak norma ANSI. W specyfikacji pojawiają się za

to funkcje �����
	�� i ����"
	��, zwracające pojedynczy znak (w postaci wartości ���)
zamieniony na literę wielką lub małą. Łatwo na tej podstawie utworzyć własne funk-

cje konwersji ciągów:

Rozdział 6. ���� Podstawy programowania dla hakerów 245

<����	�����
���2�0

������
�	��������4�������
"
�������4�#

������������#
��������4��
��"
����4��0�gN�..��4���� 11�
����4����
�	�����4��#
�����HH#
��$
$

������
����������4�������
"
�������4�#

������������#
��������4��
��"
����4��0�WI�..��4����g!�
����4����
�������4��#
�����HH#
��$
$

��
�������
"
������������?I!@#

���
�����������*F�������F��
����*�#

������
��*+�,��
�BE���C�	�U�����U�
��-�*�������#

���
�	���������#

������
��*+�,��
�BE���C�	�U�����U�
��-�*�������#

���
�����������#

������
��*+�,��
�BE���C�	�U�����U�
��-�*�������#
��
	���!#
$
�'������	��;����
��2�T	���5��
�	�������
�������
����C���
����������������;�����
��������5C���5����5��
����
�E�V�G�;���2�\������5����
������6��������������������
��56�����	
���������������
�B�������	�A1��
��
����5��
��G8���������6�������������5C����
��
�����
�������������������;����2�a�B������	���
��	���5��
�	�����
6�����5	8���
��C
�����C���������������5�����8����6�
����������2�,�
�����������	�hFi����
���������������
���hAi�2�,��	���5�����
��������
�	�����
���
���
�;�
����6�����������������������
���;�������
��������2S
�������4��
"
����4��0�gN�..��4���� 11�

4����
�	�����4��#
�HH#

246 Hack Wars. Na tropie hakerów

$
����
�������4��
"
����4��0�WI�..��4����g!�

4����
�������4��#
�HH#
$

X���
������������������	���
���;���������92:2�2

W przeciwieństwie do innych języków programowania C nie narzuca ograniczenia dłu-
gości ciągu. Jednak w przypadku niektórych procesorów (CPU) pojawia się ogranicze-
nie wielkości bloku pamięci. Oto prosty program odwracający kolejność znaków w ciągu:

<����	�����
���2�0
<����	�����
����2�0

�����4�
����������4��
"
��34�L�����������5��BE�����G������C�	�������
����5C��5�������43
��34���_����������KYZZ�43

�������4����#
�������4������#
�������
��#

��34�Y�
�������V����U������U������
�
����������C�	�43
�������������H��
���������� #

��34�M�
������������V�����������C
�	���C�	�43
����������#

��34�M�������43
���������������0����
��"
����
�����4������#
����4���������4�#
����4����
��#
������������#
�����HH#
��$
����
	��������#
$

�����������
"
�������
���
? !!@#
�������4�#

���
�����
���
�*'��5��
���C�*�#

�������
�����
���
�#

������
��*+�-�*���#
$

Rozdział 6. ���� Podstawy programowania dla hakerów 247

strtok()

Funkcja ��	��#�� jest istotną funkcją języka C, służącą do wyłączania fragmentów
ciągu. Stosuje się ją, gdy poszczególne podciągi rozdzielone są znanymi ograniczni-
kami, na przykład przecinkami:

<����	�����
���2�0
<����	�����
����2�0

�����������
"
�����������?I!@#
�������4�#

���
����������*7M&[,LKb�9LJD[Dj7ML,b�klc'b�M]&ZLKb�K]&:]&F\]*�#

��������
�
��������*�*�#
����������
��"
�����	
����#
����������
�
���KYZZ�*�*�#
��$#
$

Program można oprzeć też na pętli ��	��:

<����	�����
���2�0
<����	�����
����2�0

�����������
"
�����������?I!@#
�������4�#

���
����������*7M&[,LKb�9LJD[Dj7ML,b�klc'b�M]&ZLKb�K]&:]&F\]*�#

������������
�
��������*�*�#��#�������
�
���KYZZ�*�*��
��"
�����	
����#
��$#
$

W pierwszym wywołaniu funkcji ��	��#�� podajemy nazwę zmiennej ciągu oraz
ogranicznik. Funkcja zwraca wówczas wskaźnik do początku pierwszego podciągu
i zastępuje pierwszy ogranicznik zerem. Kolejne wywołania ��	��#�� wykonywane są
w pętli. Pierwszym parametrem jest wówczas 73.., a funkcja zwraca kolejne podcią-
gi. Ponieważ dopuszczalne jest podanie listy ograniczników, funkcja ��	��#�� może
posłużyć do utworzenia prostego programu zliczającego słowa:

<����	�����
���2�0
<����	�����
���
2�0
<����	�����
����2�0

������������
������������4����?@�
"
��T]Z&�4��#
�������
	���?1IW@#

248 Hack Wars. Na tropie hakerów

�������4�#
��������������#

�����������>��1�
��"
������	
��*+�:cdX2�9����������;����������;����S�������
�� +�*��
�����#
�������
�!�#
��$

��34�L
�G����������������
	�43
�����������������? @�*�*�#

��34�F�����V�������������
�;��
���
��43
������>���
��"
������	
��*+�:cdX2�K�����8����
�����E�����	�V�G�;�����+�*��
�����#
�������
�!�#
��$

��34�]���5	5���������43
������������!#

����
��"
����34�L����
�5�������	���������������43
�������
��
	�����1II�����#

����34�F�����V������������
C��;�
;C���	
������<�43
��������������������//����������
���������
��	�#

����34�M������;��������
������������	�43
����34�F;�������G8������6�5����������
����������������������43
����34�+
��
�
��+������������������#�S�2�>�R�����������5��43
����������
�
���
	�����*+
+��#S2>R����*�#
������������
����"
�������������HH#
�����������
�
���KYZZ�*+
+��#S2>R����*�#
����$
��$
��������>�����������..�>���������#

��34�L����
�����_�����2�:;C�R�43
�����������������
��"
������	
��*+�:;C��������������������	�V�G�;�����+�*��
�����#
��������������#
�������
�!�#
��$

��34�L����
�����_�������������������������<�43
��34�,����������������
6��;G��43
������
��*+�9����-����������-����;G���;����+�*�����? @���������#
������������#
$

Rozdział 6. ���� Podstawy programowania dla hakerów 249

Zamiana liczb na ci*gi i ci*gów na liczby

Wszystkie kompilatory C zapewniają możliwość konwertowania liczb na ciągi przy
użyciu takich funkcji jak ��	������. Funkcja ta ma jednak wiele zastosowań, co po-
woduje, że jest rozbudowana i mało wydajna. Może ją zastępować funkcja 61B/��,
korzystająca z dwóch parametrów: liczby całkowitej ze znakiem i wskaźnika do ciągu
znakowego. Funkcja kopiuje liczbę do określonego wskaźnikiem miejsca w pamięci.
Podobnie jak ��	������, funkcja 61B/�� nie sprawdza, czy ciąg docelowy ma wystar-
czającą do przechowania wyniku konwersji długość. Oto przykładowa funkcja, która
kopiuje liczbę ����
����� do ciągu znakowego.

�����]'LF��������������4�
��
"
��34M����_�������6
�C�����
6���;����
C�����������������C������G��43
��������
?g@���"� !!!!!!!!�� !!!!!!!�� !!!!!!�� !!!!!�� !!!!�� !!!�� !!�� !�� �$#
����
��#

��34�F�����V������43
����������!�
��"
����4�
�HH���U�U#
����34�M����_���������
�BE�
������6��C�43
��������!����#
��$

����������!#�����g#��HH�
��"
����������0��
?�@�
����"
������4�
�HH���U!U�H���3��
?�@#
��������-���
?�@#
����$
��$
4�
��U+!U#
���������������_�������;�_�	��������������������
���������������	��;	��
�����
�� ���������
�
������������6���������������8�����
��
������
���
	5��92:2�
����
	��#
$

�9���8����������������;�����������;���������������������5�����
������5�	5C���6
� �����2�9���8�5�������
����������������C��������������������C�����56�92:2�S

�����]'LF��������������4�
��
"
��34M����_�������6
�C�����
6���;����
C�����������������C������G��43
��������
?g@���"� !!!!!!!!�� !!!!!!!�� !!!!!!�� !!!!!�� !!!!�� !!!�� !!�� !�� �$#
����
��#
����
���������!#�33����������
���
���������������������������C
�	���C�	

��34�F�����V������43
����������!�
��"
����4�
�HH���U�U#
�����������HH#
����34�M����_���������
�BE�
������6��C�43
��������!����#
��$

250 Hack Wars. Na tropie hakerów

����������!#�����g#��HH�
��"
���������HH#
������4�
�HH���U!U�H���3��
?�@#
��������-���
?�@#
��$
��4�
��U+!U#
���
���
���������#�33����G
�����V������������C
�����C�	
����������!#
�����4�
���U�U��33�����6�������	����������C
�	��5�B���5��
�

���
�HH#
��������4�
���U!U��"��33����5���������C
����������

���������HH#
���
�HH#

��$
��������4�
�>�U+!U��"

��4��
�����������4�
�#�33����������������C�	�5	8�
��������������C
�	
�
�HH#

��$
��4��
�����������U+!U#

����
	��#
$

Język C oferuje dwie funkcje do zamiany ciągów znakowych na liczby zmiennoprze-

cinkowe:
����� i ��	�����. Prototyp funkcji
����� ma postać:

��	
����
�������
������4
�#

a prototyp funkcji ��	�����:

��	
����
�
�������
������4
�������44�
�����#

Obie funkcje przeglądają ciąg i przeprowadzają konwersję aż do momentu natrafienia

na niezrozumiały znak. Różnica między nimi polega na tym, że ��	����� pobiera do-
datkowy parametr, wskaźnik ��
	 ustawiany na pierwszy znak ciągu, który nie został
objęty konwersją. Znacznie zwiększa to wygodę sprawdzania poprawności wykona-

nia operacji.

Aby zamienić ciąg na wartość całkowitą, można użyć funkcji
�����:

��
��
�������
������4
�#

Należy pamiętać, że funkcja
����� nie zapewnia żadnej kontroli przepełnienia zmien-

nej. Nie jest zdefiniowana wartość zwracana w takiej sytuacji. W podobny sposób

działa funkcja
�����, zwracająca wartość ����. Odpowiedniki z dodatkowym para-

metrem noszą nazwy ��	���� i ��	�����.

Obsługa tekstu

Człowiek zapisuje informacje jako pewien „tekst”, złożony ze słów, liczb i znaków

przestankowych. Słowa złożone są z liter wielkich i małych, odpowiednio do wyma-

gań gramatyki. Wszystko to sprawia, że komputerowe przetwarzanie tekstu nie jest

Rozdział 6. ���� Podstawy programowania dla hakerów 251

zadaniem prostym. Norma ANSI definiuje wiele funkcji przetwarzania ciągów zna-

kowych, które z natury rozpoznają wielkość liter. Oznacza to, że litera „A” rozpo-

znawana jest jako różna od „a”. Jest to pierwsze zagadnienie, którego rozwiązanie

musi znaleźć programista pracujący nad programem przetwarzającym tekst. Na szczę-

ście, zarówno kompilatory Borlanda, jak i Microsoftu wyposażone zostały w funkcje

obsługi ciągów, które nie rozpoznają wielkości liter.

Taką odmianą funkcji ��	����� jest ��	������, a ��	������ — ��	�������. Gdy jed-
nak pojawia się kwestia przenośności kodu, niezbędna jest zgodność z ANSI C, co

pociąga za sobą napisanie własnych funkcji.

Poniżej przedstawiamy prostą implementację nierozróżniającej wielkości liter odmia-

ny funkcji ��	��	��. Tworzy ona kopie ciągów, zamienia je na wielkie litery i wyko-

nuje standardową operację ��	��	��. Pozwala to określić poszukiwaną wartość prze-
sunięcia i utworzyć wskaźnik do ciągu źródłowego.

�����4�
���
�������4� �������4�1�
"
�������� ? !!!@#
��������1? !!!@#
�������4�#

���
������ �� �#
���
������1��1�#

���
�	���� �#
���
�	����1�#

�������
��
��� ��1�#
��������
������
	���� �H������� �#
����
	���KYZZ#
$

Kolejna funkcja przegląda ciąg ��, wyszukując słowo podane jako �G. Aby funkcja
zwróciła wartość 1230, znalezione musi zostać odrębne słowo, a nie jedynie sekwen-

cja znaków. Wykorzystujemy przygotowaną wcześniej funkcję ��	���	��.

��
�����(��������4� �������4�1�
"
��34����������
�BE���������C��5�8�����1�5��
��;����������
������ 43
�������4�#
�������4m#
����
���#

�������!#
��m���� #

����
��"
����34�Z������	5����
C��������������5������G���1���� �43
���������
���
��m��1�#
����������
����"

252 Hack Wars. Na tropie hakerów

������34�M����������43
����������� #

������������0�� �
������"
��������34�F�����V��������������������������C����43
������������4��� ��0��UDU�..�4��� �����U�U�
���������������!#
������$

������34�K������������	5�����������C�	�43
��������H���
������1�#

����������4��
������"
��������34�F�����V�����������������������C�����43
����������4��0��UDU�..�4�����U�U�
�������������!#
������$
����$
����m����#
��$
����������..�>���#
����
	�����#
$

Szerokie zastosowanie znajdzie kilka dalszych prostych funkcji znakowych. �	�����	��
obcina ciąg znakowy:

�����
�	���
�������4�����
�����
��
"
��34�L
�����U����
�U�����G������C�	�U�U�43
����������
�����
��������
�����?�
��������������
�@���!#
$

�	���� usuwa końcowe znaki spacji (odstępu międzywyrazowego) w ciągu:

�����
���������4
���
�
"
��34�	�	�������5����_�����43
�������4�#

������.
���
?�
�����
���
���� @#
��������4�����A1�..���0��
���
�
����4������!#
$

��	�
����� zmienia długość ciągu:

������
������������4����
��	��
"
��34�M��������;	��BE���C�	����;C���5C���	
�	�	��5C��������43

�������	��0�!�
��������������H��	�����
��������H� �#
������
��"

Rozdział 6. ���� Podstawy programowania dla hakerów 253

�����	����!����	�#
����������������H��	���
��������H� �#
��$
$

��	����� umieszcza jeden ciąg w innym:

������
����������4��������4m�
"
��34�,�
�����C��m������C�	���43
���
����������
�����m��#
���
��������m��
�����m��#
$

��	����� zastępuje wszystkie wystąpienia pewnego podciągu innym podciągiem:

������
����������4�����������4� �������4�1�
"
��34�M��
6�	5�������
�������
C�������� ���C������1�43
�������4�#
����������������#

����
��"
����������������!#
���������
��
��������� �#
����������
����"
������34�Y�	_���C�������������43
�������
����������!����
������ ��#

������34�,�
�����C��43
�������
��������1�#
������������������ #
����$
��$
������������������#
$

Data i godzina

Język C wyposażony jest w funkcję ���
��, która odczytuje zegar systemowy kom-
putera i podaje informację o dacie i godzinie w postaci liczby sekund, która upłynęła
od północy 1 stycznia 1970 roku. Wartość ta może zostać zamieniona na czytelny dla
człowieka ciąg znaków za pomocą funkcji ����
��:

<����	�����
���2�0
<����	����
���2�0

��
�������
"
��34�F
�	�
	�����������������������
���������������
���2��43
��
���(
�
#
��34�9�
�������
6���������6����
��	�43
��
���
����KYZZ�#
������
��*:��8C�����
�����������S�-�+�*��
����.
��#
$

254 Hack Wars. Na tropie hakerów

Na ciąg zwracany przez ����
�� składa się siedem pól:

���� dzień tygodnia,

���� miesiąc roku,

���� dzień miesiąca,

���� godzina,

���� minuty,

���� sekundy,

���� rok.

Uzupełnieniem jest znak nowego wiersza i końcowe 0. Ponieważ pola mają stałą sze-

rokość, ciąg zwracany przez ����
�� idealnie nadaje się do operacji wymagających

wyodrębnienia elementów daty lub godziny. W poniższym programie definiujemy

strukturę ���!��
 oraz funkcję �� �
	!)���!��
��, której zadaniem jest wypełnienie

struktury treścią pól ciągu ����
��:

<����	�����
���2�0
<����	����
���2�0
<����	�����
����2�0

�
�	�
��������
"
����
��(���#���34�J��	
��43
����
��(����#��34�%�������43
����
��(���#���34�F��	����43
$#

�������
����(���������
�	�
���������4
�����
"
��
���(
�
#
�������
���?1W@#
�������4
�#

��34�9�
�������
6���������6����
��	�43
��
���
����KYZZ�#

��34�9�����
�����
6���������6������
������C�	�43
���
�����
�����
����.
��#

��34�L
�
��5���
�
���������43
��
���? g@���!#

��
����.
���? @#

��34�9�����	��5���C���������	5�������
������
�	�
	���43
���������
���*-1�S-1�S-1�*�.
�����0�(�����.
�����0�(����.
�����0�(����#
$

��
�������
"

Rozdział 6. ���� Podstawy programowania dla hakerów 255

���
�	�
���������
����#

����
����(��������.
�����#

������
��*+�a��
���������-!1�S-!1�S-!1�*�.
����2�(�����.
����2�(����.
����2�(����#
$

Norma ANSI przewidziała również funkcję konwertującą wartość zwracaną przez

funkcję ���
�� do postaci struktury. Przedstawiony poniżej przykład zawiera deklara-
cję struktury �� z nagłówka ���
+�:

<����	�����
���2�0
<����	����
���2�0

��
�������
"
��
���(
�
#
���
�	�
�
��4

#

��34�9�
�������������
�43
��
���
����KYZZ�#

��34�M����_����
�BE�
�����
�	�
	�6�

�43
��

��������
����.
�#

������
��*+�a��
���������-!1�S-!1�S-!1�*�

�0
�(��	��

�0
�(����

�0
�(����#
��
	����!�#
$

Struktura �� (zawarta w pliku 	����) ma następującą postać:

�
�	�
�
�
"
����
�
�(���#
����
�
�(���#
����
�
�(��	�#
����
�
�(����#
����
�
�(���#
����
�
�(����#
����
�
�(����#
����
�
�(����#
����
�
�(����
#
$#
�'���
�	�
	���������8��
�E���6B��C��������	��5���
�����	����������
��5��
�5	8
� ��������������������	����;G������2�,�
����5���
	��5���������
�����B���
���
;C�2
� �J�8���5C����
���E���
������5��	��������
��������
G�������;�������G���������6����
� ��������BE�����
���6�I �92:2�

Liczniki czasu

Programy często korzystają z możliwości pobrania daty i czasu z nieulotnej pamięci

RAM komputera. Norma ANSI przewiduje kilka różnych funkcji, które mogą zostać

do tego celu wykorzystane. Pierwszą jest funkcja ���
��, zwracająca liczbę sekund od
1 stycznia 1970 roku:

���(
�
����
���(
�4������#

256 Hack Wars. Na tropie hakerów

Funkcja wypełnia przekazaną jej jako parametr zmienną typu ���
)� �jeśli nie jest to
73..�, zwracając tę samą wartość również jako wartość wyjściową. Można więc wywo-
ływać funkcję ���
�� z parametrem 73.. i korzystać z wartości zwracanej:

<����	����
���2�0

�����������
"
��
���(
�
����#

��
�������
����KYZZ�#
$

Funkcja
�����
�� zamienia strukturę �� na 26-znakowy ciąg (przedstawiony przy
opisie funkcji ����
��):

�����4���
��������
��
�	�
�
��4
���������#

Funkcja ����
�� zamienia wartość czasu (zwracaną przez ���
��) na 26-znakowy ciąg:

<����	�����
���2�0
<����	����
���2�0
<����	�����
����2�0

�����������
"
��
���(
�
����#
���������
�?A!@#

��
�������
����KYZZ�#
���
�������
���
����.
������#
$

Kolejna funkcja, �������
��, zwraca, liczoną w sekundach, różnicę między dwoma
wartościami typu ���
)�. Służy więc do wyznaczania ilości czasu, jaki upłynął mię-
dzy dwoma zdarzeniami, czasu wykonywania funkcji lub generowania przerw w pra-
cy programu, na przykład:

<����	�����
���2�0
<����	����
���2�0

�����X&ZDb���
�������
"
��
���(
�����#

���������
����KYZZ�#
��������
����KYZZ���������H�������
����#
$

�����������
"
������
��*+�[����������������������222��I����	���*�#

��X&ZDb�I�#

���	
��*+�L���������������_�����2*�#
$

Rozdział 6. ���� Podstawy programowania dla hakerów 257

Funkcja �����
�� zamienia lokalną wartość czasu ���
)� na wartość GMT o postaci
struktury ��. Działanie tej funkcji zależy od ustawienia globalnej zmiennej strefy cza-
sowej. Struktura �� została wstępnie zdefiniowana w nagłówku ���
+�. Przedstawili-
śmy ją kilka stron wcześniej.

�
�	�
�
�
"
����
�
�(���#
����
�
�(���#
����
�
�(��	�#
����
�
�(����#
����
�
�(���#
����
�
�(����#
����
�
�(����#
����
�
�(����#
����
�
�(����
#
$#

Element struktury ��)��
% przechowuje dzień miesiąca (od 1 do 31), a ��)"�
% — dzień
tygodnia (gdzie niedzieli odpowiada 0). Czas jest mierzony od 1900 roku. Wartość
��)����� to znacznik, który informuje o tym, czy stosowany jest czas letni. Stosowa-
ne nazwy struktury i jej elementów mogą różnić się w zależności od kompilatora,
jednak sama struktura zasadniczo pozostaje niezmieniona.

Funkcja �#���
�� zamienia strukturę �� na wartość ���
)�, uzupełniając wartości pól
��)"�
% i ��)%�
%:

���(
���
�����
�	�
�
��4��#

W kolejnym przykładzie umożliwiamy wprowadzanie daty i używamy funkcji �#���
��
do ustalenia dnia tygodnia. Należy pamiętać, że funkcje związane z czasem rozpo-
znają wyłącznie daty późniejsze niż 1 stycznia 1970:

<����	�����
���2�0
<����	����
���2�0
<����	�����
����2�0

�����������
"
���
�	�
�
��
�
�	�
#
����
�����#
���������
�? !!@#
�������4�#
�������4����?@��
"*���������*�*���������;��*�*�
����*�*B����*�*�����
��*�*��C
��*�*��
�
�*��*�����
� �������� gN!�����������*$#
����
��"
�����������!#
��������
��*+�,������V���
6��������������3��3���*�#
�����������
����
���g��
����#
���������
�
�����
��*3*�#

���������>��KYZZ�
������
�
�	�
2
�(��������
�����#
��������
���������
��	�#

258 Hack Wars. Na tropie hakerów

���������
�
���KYZZ�*3*�#
����������>��KYZZ�
������
�
�	�
2
�(�������
�����#
��������
���������
��	�#

���������
�
���KYZZ��*3*�#

����������>��KYZZ�
������
�
�	�
2
�(��������
�����#
��������
���������
��	�#
����������� #
��$
��������>�����#

��
�
�	�
2
�(��	����!#
��
�
�	�
2
�(������!#
��
�
�	�
2
�(������ #
��
�
�	�
2
�(����
���� #

��34�'�����	�
����������_�
��������43
��������
����.
�
�	�
������ �
����
�
�	�
2
�(�������N#

������
���*'�������_�
��-�+�*������?
�
�	�
2
�(����@�#
$

Funkcja �#���
�� zapewnia również wprowadzenie odpowiednich poprawek dla warto-
ści przekraczających swój dopuszczalny zakres. Można to wykorzystać do ustalenia do-

kładnej daty, odległej o � dni:

<����	�����
���2�0
<����	����
���2�0
<����	�����
����2�0

�����������
"
���
�	�
�
��4
�
�	�
#
��
���(
�������5#

��������5���
����KYZZ�#
��
�
�	�
��������
����.������5�#

��
�
�	�
�0
�(�����H�� !#
����
����
�
�	�
�#
�����
�
�	�
�0
�(����0gg�
�� ���
�
�	�
�0
�(����-� !!#

�
�����������������
����5C���B���
����	�
;6���������	�����������	������������5���
� �	�;��C;�������	� g!!�5��
��;	8�������gg���
�92:2�

������
��*M��������6E�����
6�����-!1�3-!1�3-!1�+�*�
�
�	�
�0
�(�����
�
�	�
�0
�(����H
��� � �
�
�	�
�0
�(�����#
$

